416 research outputs found

    Stabilization and control system power sensitivity study

    Get PDF
    Stabilization and control system sensitivity to power-off failure rate studied by simulated missions using block power switchin

    Classification of various sources of error in range assessment using proton radiography and neural networks in head and neck cancer patients

    Get PDF
    This study evaluates the suitability of convolutional neural networks (CNN) to automatically process proton radiography (PR) based images. CNNs are used to classify PR images impaired by several sources of error affecting the proton range, more precisely setup and calibration curve errors. PR simulations were performed in 40 head and neck cancer patients, at three different anatomical locations (fields A, B and C, centered for head and neck, neck and base of skull coverage). Field sizes were 26x26cm2 for field A and 4.5x4.5cm2 for fields B and C. Range shift maps were obtained by comparing an unperturbed reference PR against a PR where one or more sources of error affected the proton range. CT calibration curve errors in soft, bone and fat tissues and setup errors in the anterior-posterior and inferior-superior directions were simulated individually and in combination. A CNN was trained for each type of PR field, leading to 3 CNNs trained with a mixture of range shift maps arising from one or more sources of range error. To test the full/partial/wrong agreement between predicted and actual sources of range error in the range shift maps, exact, partial and wrong match percentages were computed for an independent test dataset containing range shift maps arising from isolated or combined errors, retrospectively. The CNN corresponding to field A showed superior capability to detect isolated and combined errors, with exact matches of 92% and 71% respectively. Field B showed exact matches of 80% and 54%, and field C resulted in exact matches of 77% and 41%. The suitability of CNNs to classify PR based images containing different sources of error affecting the proton range was demonstrated. This procedure enables the detection of setup and calibration curve errors when they appear individually or in combination, providing valuable information for the interpretation of PR images

    Incomplete Charge Collection at Inter-Pixel Gap in Low-and High-Flux Cadmium Zinc Telluride Pixel Detectors

    Get PDF
    The success of cadmium zinc telluride (CZT) detectors in room-temperature spectroscopic X-ray imaging is now widely accepted. The most common CZT detectors are characterized by enhanced-charge transport properties of electrons, with mobility-lifetime products µeτe > 10−2 cm2/V and µhτh > 10−5 cm2/V. These materials, typically termed low-flux LF-CZT, are successfully used for thick electron-sensing detectors and in low-flux conditions. Recently, new CZT materials with hole mobility-lifetime product enhancements (µhτh > 10−4 cm2/V and µeτe > 10−3 cm2/V) have been fabricated for high-flux measurements (high-flux HF-CZT detectors). In this work, we will present the performance and charge-sharing properties of sub-millimeter CZT pixel detectors based on LF-CZT and HF-CZT crystals. Experimental results from the measurement of energy spectra after charge-sharing addition (CSA) and from 2D X-ray mapping highlight the better charge-collection properties of HF-CZT detectors near the inter-pixel gaps. The successful mitigation of the effects of incomplete charge collection after CSA was also performed through original charge-sharing correction techniques. These activities exist in the framework of international collaboration on the development of energy-resolved X-ray scanners for medical applications and non-destructive testing in the food industry

    <i>miniPixD</i>: a compact sample analysis system which combines X-ray imaging and diffraction

    Get PDF
    This paper introduces miniPixD: a new, compact system that utilises transmission X-ray imaging and X-ray diffraction (XRD) to locate and identify materials of interest within an otherwise opaque volume. The system and the embodied techniques have utility in security screening, medical diagnostics, non-destructive testing (NDT) and quality assurance (QA). This paper outlines the design of the system including discussion on the choice of components and presents some data from relevant samples which are compared to other energy dispersive and angular dispersive XRD techniques

    Estimating Kidney Function in the Critically Ill Patients

    Get PDF
    Glomerular filtration rate (GFR) is an accepted measure for assessment of kidney function. For the critically ill patient, creatinine clearance is the method of reference for the estimation of the GFR, although this is often not measured but estimated by equations (i.e., Cockroft-Gault or MDRD) not well suited for the critically ill patient. Functional evaluation of the kidney rests in serum creatinine (Crs) that is subjected to multiple external factors, especially relevant overhydration and loss of muscle mass. The laboratory method used introduces variations in Crs, an important fact considering that small increases in Crs have serious repercussion on the prognosis of patients. Efforts directed to stratify the risk of acute kidney injury (AKI) have crystallized in the RIFLE or AKIN systems, based in sequential changes in Crs or urine flow. These systems have provided a common definition of AKI and, due to their sensitivity, have meant a considerable advantage for the clinical practice but, on the other side, have introduced an uncertainty in clinical research because of potentially overestimating AKI incidence. Another significant drawback is the unavoidable period of time needed before a patient is classified, and this is perhaps the problem to be overcome in the near future

    Lack of neurotrophin-4 causes selective structural and chemical deficits in sympathetic ganglia and their preganglionic innervation

    Get PDF
    Neurotrophin-4 (NT-4) is perhaps the still most enigmatic member of the neurotrophin family. We show here that NT-4 is expressed in neurons of paravertebral and prevertebral sympathetic ganglia, i.e., the superior cervical (SCG), stellate (SG), and celiac (CG) ganglion. Mice deficient for NT-4 showed a significant reduction (20-30%) of preganglionic sympathetic neurons in the intermediolateral column (IML) of the thoracic spinal cord. In contrast, neuron numbers in the SCG, SG, and CG were unchanged. Numbers of axons in the thoracic sympathetic trunk (TST) connecting the SG with lower paravertebral ganglia were also reduced, whereas axon numbers in the cervical sympathetic trunk (CST) were unaltered. Axon losses in the TST were paralleled by losses of synaptic terminals on SG neurons visualized by electron microscopy. Furthermore, immunoreactivity for the synaptic vesicle antigen SV2 was clearly reduced in the SG and CG. Levels of catecholamines and tyrosine hydroxylase immunoreactivity were dramatically reduced in the SG and the CG but not in the SCG. Despite this severe phenotype in the sympathetic system, blood pressure levels were not reduced and displayed a pattern more typical of deficits in baroreceptor afferents. Numbers of IML neurons were unaltered at postnatal day 4, suggesting a postnatal requirement for their maintenance. In light of these and previous data, we hypothesize that NT-4 provided by postganglionic sympathetic neurons is required for establishing and/or maintaining synapses of IML neurons on postganglionic cells. Impairment of synaptic connectivity may consequently reduce impulse flow, causing a reduction in transmitter synthesis in postganglionic neurons

    Single-shot structural analysis by high-energy X-ray diffraction using an ultrashort all-optical source

    Get PDF
    High-energy X-rays (HEX-rays) with photon energies on order of 100 keV have attractive characteristics, such as comparably low absorption, high spatial resolution and the ability to access inner-shell states of heavy atoms. These properties are advantageous for many applications ranging from studies of bulk materials to the investigation of materials in extreme conditions. Ultrafast X-ray diffraction allows the direct imaging of atomic dynamics simultaneously on its natural time and length scale. However, using HEX-rays for ultrafast studies has been limited due to the lack of sources that can generate pulses of sufficiently short (femtosecond) duration in this wavelength range. Here we show single-crystal diffraction using ultrashort ~90 keV HEX-ray pulses generated by an all-optical source based on inverse Compton scattering. We also demonstrate a method for measuring the crystal lattice spacing in a single shot that contains only ~105 photons in a spectral bandwidth of ~50% full width at half maximum (FWHM). Our approach allows us to obtain structural information from the full X-ray spectrum. As target we use a cylindrically bent Ge crystal in Laue transmission geometry. This experiment constitutes a first step towards measurements of ultrafast atomic dynamics using femtosecond HEX-ray pulses

    Correlation of X-ray diffraction signatures of breast tissue and their histopathological classification

    Get PDF
    This pilot study examines the correlation of X-ray diffraction (XRD) measurements with the histopathological analysis of breast tissue. Eight breast cancer samples were investigated. Each sample contained a mixture of normal and cancerous tissues. In total, 522 separate XRD measurements were made at different locations across the samples (8 in total). The resulting XRD spectra were subjected to principal component analysis (PCA) in order to determine if there were any distinguishing features that could be used to identify different tissue components. 99.0% of the variation between the spectra were described by the first two principal components (PC). Comparing the location of points in PC space with the classification determined by histopathology indicated correlation between the shape/magnitude of the XRD spectra and the tissue type. These results are encouraging and suggest that XRD could be used for the intraoperative or postoperative classification of bulk tissue samples

    Assessing the outcomes of participatory research: protocol for identifying, selecting, appraising and synthesizing the literature for realist review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Participatory Research (PR) entails the co-governance of research by academic researchers and end-users. End-users are those who are affected by issues under study (<it>e.g.</it>, community groups or populations affected by illness), or those positioned to act on the knowledge generated by research (<it>e.g.</it>, clinicians, community leaders, health managers, patients, and policy makers). Systematic reviews assessing the generalizable benefits of PR must address: the diversity of research topics, methods, and intervention designs that involve a PR approach; varying degrees of end-user involvement in research co-governance, both within and between projects; and the complexity of outcomes arising from long-term partnerships.</p> <p>Methods</p> <p>We addressed the above mentioned challenges by adapting realist review methodology to PR assessment, specifically by developing inductively-driven identification, selection, appraisal, and synthesis procedures. This approach allowed us to address the non-uniformity and complexity of the PR literature. Each stage of the review involved two independent reviewers and followed a reproducible, systematic coding and retention procedure. Retained studies were completed participatory health interventions, demonstrated high levels of participation by non-academic stakeholders (<it>i.e.</it>, excluding studies in which end-users were not involved in co-governing throughout the stages of research) and contained detailed descriptions of the participatory process and context. Retained sets are being mapped and analyzed using realist review methods.</p> <p>Results</p> <p>The librarian-guided search string yielded 7,167 citations. A total of 594 citations were retained after the identification process. Eighty-three papers remained after selection. Principle Investigators (PIs) were contacted to solicit all companion papers. Twenty-three sets of papers (23 PR studies), comprising 276 publications, passed appraisal and are being synthesized using realist review methods.</p> <p>Discussion</p> <p>The systematic and stage-based procedure addressed challenges to PR assessment and generated our robust understanding of complex and heterogeneous PR practices. To date, realist reviews have focussed on evaluations of relatively uniform interventions. In contrast our PR search yielded a wide diversity of partnerships and research topics. We therefore developed tools to achieve conceptual clarity on the PR field, as a beneficial precursor to our theoretically-driven synthesis using realist methods. Findings from the ongoing review will be provided in forthcoming publications.</p
    corecore