64 research outputs found

    Charged pion production in fixed target Pb + Pb collisions at 158 GeV per nucleon

    Get PDF
    Changes in pion production as a function of the impact parameter of the collision or the incident energy, may reveal characteristics of a possible first-order phase transition from nuclear to quark matter, as predicted by lattice quantum chromodynamics. In this paper we investigate charged pion production in Pb+Pb collisions at 158 GeV/nucleon near 0° production angle and at forward rapidity (4.3y6.3)(4.3\leq y \leq 6.3). The centrality dependence of pion production is shown in the impact parameter range ~ 2-12 fm at the rapidities y = 5.7 and 6.3. An enhancement in the pi-/pi+ ratio has been measured near beam rapidity, indicating Coulomb interaction of charged pions with the spectator protons. The charged pion yield per nucleon participating in the collision (N_p) at y = 5.7 increases faster than linearly with N_p, up to N_p~100 and then it saturates, while at y = 6.3 it does not exhibit any sudden change as a function of N_p

    Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    Get PDF
    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300~GeV at an incident angle θ\theta of about 11^\circ is well-described by the expression \sigma/E = ((46.5 \pm 6.0)\%/\sqrt{E} +(1.2 \pm 0.3)\%) \oplus (3.2 \pm 0.4)~\mbox{GeV}/E. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied

    Response of the ATLAS tile calorimeter prototype to muons

    Get PDF
    A study of high energy muons traversing the ATLAS hadron Tile calorimeter in the barrel region in the energy range between 10 and 300~GeV is presented. Both test beam experimental data and Monte Carlo simulations are given and show good agreement. The Tile calorimeter capability of detecting isolated muons over the above energy range is demonstrated. A signal to background ratio of about 10 is expected for the nominal LHC luminosity (1034cm2sec110^{34} cm^{-2} sec^{-1}). The photoelectron statistics effect in the muon shape response is shown. The e/mip ratio is found to be 0.81±0.03 0.81 \pm 0.03; the e/μ\mu ratio is in the range 0.91 - 0.97. The energy loss of a muon in the calorimeter, dominated by the energy lost in the absorber, can be correlated to the energy loss in the active material. This correlation allows one to correct on an event by event basis the muon energy loss in the calorimeter and therefore reduce the low energy tails in the muon momentum distribution

    Evaluation of Fermi Read-out of the ATLAS Tilecal Prototype

    Get PDF
    Prototypes of the \fermi{} system have been used to read out a prototype of the \atlas{} hadron calorimeter in a beam test at the CERN SPS. The \fermi{} read-out system, using a compressor and a 40 MHz sampling ADC, is compared to a standard charge integrating read-out by measuring the energy resolution of the calorimeter separately with the two systems on the same events. Signal processing techniques have been designed to optimize the treatment of \fermi{} data. The resulting energy resolution is better than the one obtained with the standard read-out

    A measurement of the energy loss spectrum of 150 GeV muons in iron

    Get PDF
    The energy loss spectrum of 150 GeV muons has been measured with a prototype of the ATLAS hadron calorimeter in the H8 beam of the CERN SPS.\\ The differential probability dP/dvdP/dv per radiation length of a fractional energy loss v=ΔEμ/Eμv = \Delta E_{\mu} / E_{\mu} has been measured in the range v=0.01÷0.95v = 0.01 \div 0.95 ; it is then compared with the theoretical predictions for energy losses due to bremsstrahlung and production of electron-positron pairs or of energetic knock-on electrons.\\ The integrated probability 0.010.95(dP/dv)dv\int_{0.01}^{0.95} (dP/dv) dv is (1.610±0.015stat.±0.105syst.)103(1.610\pm0.015_{stat.}\pm0.105_{syst.})\cdot10^{-3} in agreement with the theoretical predictions of 1.5561031.556\cdot10^{-3} and 1.6191031.619\cdot10^{-3}. %7.8.96 - start Agreement with theory is also found in two intervals of vv where production of electron-positron pairs and knock-on electrons dominates. In the region of bremsstrahlung dominance (v=0.12÷0.95v = 0.12\div0.95) the measured integrated probability (1.160±0.040stat±0.075syst)104(1.160\pm0.040_{stat}\pm0.075_{syst})\cdot 10^{-4} is in agreement with the theoretical value of 1.1851041.185 \cdot 10^{-4} , obtained using Petrukhin and Shestakov's \cite{PS} description of the bremsstrahlung process. The same result is about 3.6 standard deviations (defined as the quadratic sum of statistical and systematic errors) lower than the theoretical prediction of 1.472104 1.472\cdot 10^{-4}, obtained using Tsai's \cite{TS} description of bremsstrahlung

    The Optical Instrumentation of the ATLAS Tile Calorimeter

    Get PDF
    The purpose of this Note is to describe the optical assembly procedure called here Optical Instrumentation and the quality tests conducted on the assembled units. Altogether, 65 Barrel (or LB) modules were constructed - including one spare - together with 129 Extended Barrel (EB) modules (including one spare). The LB modules were mechanically assembled at JINR (Dubna, Russia) and transported to CERN, where the optical instrumentation was performed with personnel contributed by several Institutes. The modules composing one of the two Extended Barrels (known as EBA) were mechanically assembled in the USA, and instrumented in two US locations (ANL, U. of Michigan), while the modules of the other Extended barrel (EBC) were assembled in Spain and instrumented at IFAE (Barcelona). Each of the EB modules includes a subassembly known as ITC that contributes to the hermeticity of the calorimeter; all ITCs were assembled at UTA (Texas), and mounted onto the module mechanical structures at the EB mechanical assembly locations.The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of ±1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper

    Design, Construction and Installation of the ATLAS Hadronic Barrel Scintillator-Tile Calorimeter

    Get PDF
    The scintillator tile hadronic calorimeter is a sampling calorimeter using steel as the absorber structure and scintillator as the active medium. The scintillator is located in "pockets" in the steel structure and the wavelength-shifting fibers are contained in channels running radially within the absorber to photomultiplier tubes which are located in the outer support girders of the calorimeter structure. In addition, to its role as a detector for high energy particles, the tile calorimeter provides the direct support of the liquid argon electromagnetic calorimeter in the barrel region, and the liquid argon electromagnetic and hadronic calorimeters in the endcap region. Through these, it indirectly supports the inner tracking system and beam pipe. The steel absorber, and in particular the support girders, provide the flux return for the solenoidal field from the central solenoid. Finally, the end surfaces of the barrel calorimeter are used to mount services, power supplies and readout crates for the inner tracking systems and the liquid argon barrel electromagnetic calorimeter

    The Production and Qualification of Scintillator Tiles for the ATLAS Hadronic Calorimeter

    Get PDF
    The production of the scintillator tiles for the ATLAS Tile Calorimeter is presented. In addition to the manufacture and production, the properties of the tiles will be presented including light yield, uniformity and stability
    corecore