375 research outputs found

    Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection.

    Get PDF
    Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses

    Male reproductive health and environmental xenoestrogens

    Get PDF
    EHP is a publication of the U.S. government. Publication of EHP lies in the public domain and is therefore without copyright. Research articles from EHP may be used freely; however, articles from the News section of EHP may contain photographs or figures copyrighted by other commercial organizations and individuals that may not be used without obtaining prior approval from both the EHP editors and the holder of the copyright. Use of any materials published in EHP should be acknowledged (for example, "Reproduced with permission from Environmental Health Perspectives") and a reference provided for the article from which the material was reproduced.Male reproductive health has deteriorated in many countries during the last few decades. In the 1990s, declining semen quality has been reported from Belgium, Denmark, France, and Great Britain. The incidence of testicular cancer has increased during the same time incidences of hypospadias and cryptorchidism also appear to be increasing. Similar reproductive problems occur in many wildlife species. There are marked geographic differences in the prevalence of male reproductive disorders. While the reasons for these differences are currently unknown, both clinical and laboratory research suggest that the adverse changes may be inter-related and have a common origin in fetal life or childhood. Exposure of the male fetus to supranormal levels of estrogens, such as diethlylstilbestrol, can result in the above-mentioned reproductive defects. The growing number of reports demonstrating that common environmental contaminants and natural factors possess estrogenic activity presents the working hypothesis that the adverse trends in male reproductive health may be, at least in part, associated with exposure to estrogenic or other hormonally active (e.g., antiandrogenic) environmental chemicals during fetal and childhood development. An extensive research program is needed to understand the extent of the problem, its underlying etiology, and the development of a strategy for prevention and intervention.Supported by EU Contract BMH4-CT96-0314

    Long-Term IGF-I Exposure Decreases Autophagy and Cell Viability

    Get PDF
    A reduction in IGF-I signaling has been found to increase lifespan in multiple organisms despite the fact that IGF-I is a trophic factor for many cell types and has been found to have protective effects against multiple forms of damage in acute settings. The increase in longevity seen in response to reduced IGF-I signaling suggests that there may be differences between the acute and chronic impact of IGF-I signaling. We have examined the possibility that long-term stimulation with IGF-I may have a negative impact at the cellular level using quiescent human fibroblasts. We find that fibroblast cells exposed to IGF-I for 14 days have reduced long-term viability as judged by colony forming assays, which is accompanied by an accumulation of senescent cells. In addition we observe an accumulation of cells with depolarized mitochondria and a reduction in autophagy in the long-term IGF-I treated cultures. An examination of mice with reduced IGF-I levels reveals evidence of enhanced autophagy and fibroblast cells derived from these mice have a larger mitochondrial mass relative to controls indicating that changes in mitochondrial turnover occurs in animals with reduced IGF-I. The results indicate that chronic IGF-I stimulation leads to mitochondrial dysfunction and reduced cell viability

    The CEACAM1 expression is decreased in the liver of severely obese patients with or without diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type 2 diabetes is mainly caused by insulin resistance. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is an important candidate for causing insulin resistance.</p> <p>Methods</p> <p>The CEACAM1 expression was evaluated immunohistochemically in the liver tissues of 99 severely obese or non-obese subjects with or without diabetes. The CEACAM1 expression was classified into two categories: a normal expression or a decreased expression.</p> <p>Results</p> <p>The CEACAM1 expression was markedly decreased in the hepatocytes with macrovesicular steatosis. A decreased CEACAM1 expression was noted in 29 (29%) of 99 cases. The incidence of a decreased CEACAM1 expression was significantly higher in high grade fatty liver as well as severe obesity with or without diabetes (p < 0.05). The incidence of a decreased CEACAM1 expression was not different between the diabetic and non-diabetic groups.</p> <p>Conclusions</p> <p>This data supports that a decreased CEACAM1 expression is related to obesity and a fatty liver.</p

    Classification of the height and flexibility of the medial longitudinal arch of the foot

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The risk of developing injuries during standing work may vary between persons with different foot types. High arched and low arched feet, as well as rigid and flexible feet, are considered to have different injury profiles, while those with normal arches may sustain fewer injuries. However, the cut-off values for maximum values (subtalar position during weight-bearing) and range of motion (ROM) values (difference between subtalar neutral and subtalar resting position in a weight-bearing condition) for the medial longitudinal arch (MLA) are largely unknown. The purpose of this study was to identify cut-off values for maximum values and ROM of the MLA of the foot during static tests and to identify factors influencing foot posture.</p> <p>Methods</p> <p>The participants consisted of 254 volunteers from Central and Northern Denmark (198 m/56 f; age 39.0 ± 11.7 years; BMI 27.3 ± 4.7 kg/m<sup>2</sup>). Navicular height (NH), longitudinal arch angle (LAA) and Feiss line (FL) were measured for either the left or the right foot in a subtalar neutral position and subtalar resting position. Maximum values and ROM were calculated for each test. The 95% and 68% prediction intervals were used as cut-off limits. Multiple regression analysis was used to detect influencing factors on foot posture.</p> <p>Results</p> <p>The 68% cut-off values for maximum MLA values and MLA ROM for NH were 3.6 to 5.5 cm and 0.6 to 1.8 cm, respectively, without taking into account the influence of other variables. Normal maximum LAA values were between 131 and 152° and normal LAA ROM was between -1 and 13°. Normal maximum FL values were between -2.6 and -1.2 cm and normal FL ROM was between -0.1 and 0.9 cm. Results from the multivariate linear regression revealed an association between foot size with FL, LAA, and navicular drop.</p> <p>Conclusions</p> <p>The cut-off values presented in this study can be used to categorize people performing standing work into groups of different foot arch types. The results of this study are important for investigating a possible link between arch height and arch movement and the development of injuries.</p

    The influence of foot geometry on the calcaneal osteotomy angle based on two-dimensional static force analyses

    Get PDF
    Background: Malalignment of the hindfoot can be corrected with a calcaneal osteotomy (CO). A well-selected osteotomy angle in the sagittal plane will reduce the shear force in the osteotomy plane while walking. The purpose was to determine the presence of a relationship between the foot geometry and loading of the calcaneus, which influences the choice of the preferred CO angle. Methods A static free body force analysis was made of the posterior calcaneal fragment in the second half of the stance phase to determine the main loads: the plantar apeunorosis (PA) and Achilles tendon (AT). The third load is on the osteotomy surface which should be oriented such that the shear component of the force is zero. The force direction of the PA and AT was measured on 58 MRIs of the foot, and the force ratio between both structures was taken from the literature. In addition the PA-to-AT force ratio was estimated for different foot geometries to identify the relationship. Results: Based on the wish to minimize the shear force during walking, a mean CO angle was determined to be 33º (SD8) relative to the foot sole. In pes planus foot geometry, the angle should be higher than the mean. In pes cavus foot geometry, the angle should be smaller. Conclusion: Foot geometry, in particular the relative foot heights is a determinant for the individual angle in performing the sliding calcaneal osteotomy. It is recommended to take into account the foot geometry (arch) when deciding on the CO angle for hindfoot correction.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin
    • …
    corecore