708 research outputs found

    Partitioning a call graph

    Get PDF
    Splitting a large software system into smaller and more manageable units has become an important problem for many organizations. The basic structure of a software system is given by a directed graph with vertices representing the programs of the system and arcs representing calls from one program to another. Generating a good partitioning into smaller modules becomes a minimization problem for the number of programs being called by external programs. First, we formulate an equivalent integer linear programming problem with 0–1 variables. theoretically, with this approach the problem can be solved to optimality, but this becomes very costly with increasing size of the software system. Second, we formulate the problem as a hypergraph partitioning problem. This is a heuristic method using a multilevel strategy, but it turns out to be very fast and to deliver solutions that are close to optimal

    A growing disconnection from nature is evident in cultural products

    Get PDF
    Human connection with nature is widely believed to be in decline, even though empirical evidence on the magnitude and temporal pattern of the change is scarce. Studying works of popular culture in English throughout the 20th century and later, we document a cultural shift away from nature, beginning in the 1950s. Since then, references to nature have been decreasing steadily in fiction, song lyrics, and film storylines. No parallel decline is observed in references to the human-made environment. These findings are cause for concern, not only because they imply foregone benefits from engagement with nature, but also because cultural products are agents of socialization that can evoke curiosity, respect, and concern for the natural world

    Profile and functional analysis of small RNAs derived from Aspergillus fumigatus infected with double-stranded RNA mycoviruses

    Get PDF
    Background: Mycoviruses are viruses that naturally infect and replicate in fungi. Aspergillus fumigatus, an opportunistic pathogen causing fungal lung diseases in humans and animals, was recently shown to harbour several different types of mycoviruses. A well-characterised defence against virus infection is RNA silencing. The A. fumigatus genome encodes essential components of the RNA silencing machinery, including Dicer, Argonaute and RNA-dependent RNA polymerase (RdRP) homologues. Active silencing of double-stranded (ds)RNA and the generation of small RNAs (sRNAs) has been shown for several mycoviruses and it is anticipated that a similar mechanism will be activated in A. fumigatus isolates infected with mycoviruses. Results: To investigate the existence and nature of A. fumigatus sRNAs, sRNA-seq libraries of virus-free and virus-infected isolates were created using Scriptminer adapters and compared. Three dsRNA viruses were investigated: Aspergillus fumigatus partitivirus-1 (AfuPV-1, PV), Aspergillus fumigatus chrysovirus (AfuCV, CV) and Aspergillus fumigatus tetramycovirus-1 (AfuTmV-1, NK) which were selected because they induce phenotypic changes such as coloration and sectoring. The dsRNAs of all three viruses, which included two conventionally encapsidated ones PV and CV and one unencapsidated example NK, were silenced and yielded characteristic vsiRNAs together with co-incidental silencing of host fungal genes which shared sequence homology with the viral genomes. Conclusions: Virus-derived sRNAs were detected and characterised in the presence of virus infection. Differentially expressed A. fumigatus microRNA-like (miRNA-like) sRNAs and small interfering RNAs (siRNAs) were detected and validated. Host sRNA loci which were differentially expressed as a result of virus infection were also identified. To our knowledge, this is the first study reporting the sRNA profiles of A. fumigatus isolates

    Global Health and Economic Impacts of Future Ozone Pollution

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).We assess the human health and economic impacts of projected 2000-2050 changes in ozone pollution using the MIT Emissions Prediction and Policy Analysis-Health Effects (EPPA-HE) model, in combination with results from the GEOS-Chem global tropospheric chemistry model that simulated climate and chemistry effects of IPCC SRES emissions. We use EPPA to assess the human health damages (including acute mortality and morbidity outcomes) caused by ozone pollution and quantify their economic impacts in sixteen world regions. We compare the costs of ozone pollution under scenarios with 2000 and 2050 ozone precursor and greenhouse gas emissions (SRES A1B scenario). We estimate that health costs due to global ozone pollution above pre-industrial levels by 2050 will be 580billion(year2000580 billion (year 2000) and that acute mortalities will exceed 2 million. We find that previous methodologies underestimate costs of air pollution by more than a third because they do not take into account the long-term, compounding effects of health costs. The economic effects of emissions changes far exceed the influence of climate alone.United States Department of Energy, Office of Science (BER) grants DE-FG02-94ER61937 and DE-FG02-93ER61677, the United States Environmental Protection Agency grant EPA-XA-83344601-0, and the industrial and foundation sponsors of the MIT Joint Program on the Science and Policy of Global Change

    LGBT trauma in turkey and psychological consequences of working/volunteering with LGBT trauma

    Get PDF
    Namer Y, HĂŒnler OS. LGBT trauma in turkey and psychological consequences of working/volunteering with LGBT trauma. In: Pereira H, Costa P, eds. Coming-out for LGBT psychology in the current international scenario. Lisbon: University of Beira Interior; 2014: 194-198.Around the world, LGBT populations are under the risk of having traumatic experiences. LGBT individuals could and do experience physical or sexual assaults, same-sex domestic violence, or bullying. Sometimes psychological/ psychiatric/legal interventions could be traumatic instead of alleviating. In Turkey, albeit being LGBT is not illegal or prohibited, being LGBT makes people vulnerable to exclusion, stigma, isolation, abuse or insult. LGBT organizations have a peculiar importance in this context. In Turkey, LGBT organizations in different geographical locations have different target groups with slightly different political perspectives. These organizations have wide variety of functions, such as creating public visibility, providing role models for young LGBTs, educating and supporting families, offering legal counseling, providing social, emotional and economical support and creating a peer group. Majority of these organizations are working on a volunteer basis. Unfortunately, not only hectic workload and diversity of duties but also continuously witnessing survivors and sometimes non-survivors of trauma could be exhausting for volunteers. Because of this reason, it is essential for LGBT organization members/volunteers to understand the concept of trauma, be familiar with the types of it and be informed about different ways of intervening and coping with it while supporting the traumatized member

    Understanding mercury oxidation and air–snow exchange on the East Antarctic Plateau: a modeling study

    Get PDF
    Distinct diurnal and seasonal variations of mercury (Hg) have been observed in near-surface air at Concordia Station on the East Antarctic Plateau, but the processes controlling these characteristics are not well understood. Here, we use a box model to interpret the Hg0 (gaseous elemental mercury) measurements in thes year 2013. The model includes atmospheric Hg0 oxidation (by OH, O3, or bromine), surface snow HgII (oxidized mercury) reduction, and air–snow exchange, and is driven by meteorological fields from a regional climate model. The simulations suggest that a photochemically driven mercury diurnal cycle occurs at the air–snow interface in austral summer. The fast oxidation of Hg0 in summer may be provided by a two-step bromine-initiated scheme, which is favored by low temperature and high nitrogen oxides at Concordia. The summertime diurnal variations of Hg0 (peaking during daytime) may be confined within several tens of meters above the snow surface and affected by changing mixed layer depths. Snow re-emission of Hg0 is mainly driven by photoreduction of snow HgII in summer. Intermittent warming events and a hypothesized reduction of HgII occurring in snow in the dark may be important processes controlling the mercury variations in the non-summer period, although their relative importance is uncertain. The Br-initiated oxidation of Hg0 is expected to be slower at Summit Station in Greenland than at Concordia (due to their difference in temperature and levels of nitrogen oxides and ozone), which may contribute to the observed differences in the summertime diurnal variations of Hg0 between these two polar inland stations.</p

    Use of a global model to understand speciated atmospheric mercury observations at five high-elevation sites

    Get PDF
    © 2015 Author(s). Atmospheric mercury (Hg) measurements using the TekranÂź analytical system from five high-elevation sites (1400-3200 m elevation), one in Asia and four in the western US, were compiled over multiple seasons and years, and these data were compared with the GEOS-Chem global model. Mercury data consisted of gaseous elemental Hg (GEM) and "reactive Hg" (RM), which is a combination of the gaseous oxidized (GOM) and particulate bound ( < 2.5 ÎŒm) (PBM) fractions as measured by the TekranÂź system. We used a subset of the observations by defining a "free tropospheric" (FT) data set by screening using measured water vapor mixing ratios. The oxidation scheme used by the GEOS-Chem model was varied between the standard run with Br oxidation and an alternative run with OH-O 3 oxidation. We used this model-measurement comparison to help interpret the spatio-temporal trends in, and relationships among, the Hg species and ancillary parameters, to understand better the sources and fate of atmospheric RM. The most salient feature of the data across sites, seen more in summer relative to spring, was that RM was negatively correlated with GEM and water vapor mixing ratios (WV) and positively correlated with ozone (O 3 ), both in the standard model and the observations, indicating that RM was formed in dry upper altitude air from the photo-oxidation of GEM. During a free tropospheric transport high RM event observed sequentially at three sites from Oregon to Nevada, the slope of the RM/GEM relationship at the westernmost site was-1020 ± 209 pg ng -1 , indicating near-quantitative GEM-to-RM photochemical conversion. An improved correlation between the observations and the model was seen when the model was run with the OH-O3 oxidation scheme instead of the Br oxidation scheme. This simulation produced higher concentrations of RM and lower concentrations of GEM, especially at the desert sites in northwestern Nevada. This suggests that future work should investigate the effect of Br-and O 3 -initiated gas-phase oxidation occurring simultaneously in the atmosphere, as well as aqueous and heterogeneous reactions to understand whether there are multiple global oxidants for GEM and hence multiple forms of RM in the atmosphere. If the chemical forms of RM were known, then the collection efficiency of the analytical method could be evaluated better.Taiwan. Environmental Protection Administratio

    Chemical cycling and deposition of atmospheric mercury in Polar Regions: review of recent measurements and comparison with models

    Get PDF
    Mercury (Hg) is a worldwide contaminant that can cause adverse health effects to wildlife and humans. While atmospheric modeling traces the link from emissions to deposition of Hg onto environmental surfaces, large uncertainties arise from our incomplete understanding of atmospheric processes (oxidation pathways, deposition, and re-emission). Atmospheric Hg reactivity is exacerbated in high latitudes and there is still much to be learned from polar regions in terms of atmospheric processes. This paper provides a synthesis of the atmospheric Hg monitoring data available in recent years (2011–2015) in the Arctic and in Antarctica along with a comparison of these observations with numerical simulations using four cutting-edge global models. The cycle of atmospheric Hg in the Arctic and in Antarctica presents both similarities and differences. Coastal sites in the two regions are both influenced by springtime atmospheric Hg depletion events and by summertime snowpack re-emission and oceanic evasion of Hg. The cycle of atmospheric Hg differs between the two regions primarily because of their different geography. While Arctic sites are significantly influenced by northern hemispheric Hg emissions especially in winter, coastal Antarctic sites are significantly influenced by the reactivity observed on the East Antarctic ice sheet due to katabatic winds. Based on the comparison of multi-model simulations with observations, this paper discusses whether the processes that affect atmospheric Hg seasonality and interannual variability are appropriately represented in the models and identifies research gaps in our understanding of the atmospheric Hg cycling in high latitudes
    • 

    corecore