10 research outputs found

    Adaptation of Plasmodium falciparum to humans involved the loss of an ape-specific erythrocyte invasion ligand

    Get PDF
    Abstract: Plasmodium species are frequently host-specific, but little is currently known about the molecular factors restricting host switching. This is particularly relevant for P. falciparum, the only known human-infective species of the Laverania sub-genus, all other members of which infect African apes. Here we show that all tested P. falciparum isolates contain an inactivating mutation in an erythrocyte invasion associated gene, PfEBA165, the homologues of which are intact in all ape-infective Laverania species. Recombinant EBA165 proteins only bind ape, not human, erythrocytes, and this specificity is due to differences in erythrocyte surface sialic acids. Correction of PfEBA165 inactivating mutations by genome editing yields viable parasites, but is associated with down regulation of both PfEBA165 and an adjacent invasion ligand, which suggests that PfEBA165 expression is incompatible with parasite growth in human erythrocytes. Pseudogenization of PfEBA165 may represent a key step in the emergence and evolution of P. falciparum

    Determinants of brain swelling in pediatric and adult cerebral malaria.

    Get PDF
    Cerebral malaria (CM) affects children and adults, but brain swelling is more severe in children. To investigate features associated with brain swelling in malaria, we performed blood profiling and brain MRI in a cohort of pediatric and adult patients with CM in Rourkela, India, and compared them with an African pediatric CM cohort in Malawi. We determined that higher plasma Plasmodium falciparum histidine rich protein 2 (PfHRP2) levels and elevated var transcripts that encode for binding to endothelial protein C receptor (EPCR) were linked to CM at both sites. Machine learning models trained on the African pediatric cohort could classify brain swelling in Indian children CM cases but had weaker performance for adult classification, due to overall lower parasite var transcript levels in this age group and more severe thrombocytopenia in Rourkela adults. Subgrouping of patients with CM revealed higher parasite biomass linked to severe thrombocytopenia and higher Group A-EPCR var transcripts in mild thrombocytopenia. Overall, these findings provide evidence that higher parasite biomass and a subset of Group A-EPCR binding variants are common features in children and adult CM cases, despite age differences in brain swelling

    Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite

    No full text
    Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways.National Institutes of Health (U.S.) (grant AI091787)Centers for Disease Control and Prevention (U.S.) (grant (R36-CK000119-01))National Institutes of Health (U.S.) (Epidemiology of Infectious Disease and Biodefense Training Grant, 2-T32-AI007535-12
    corecore