12 research outputs found
Covalently Modulated and Transiently Visible Writing: Rational Association of Two Extremes of Water Wettabilities
Anticounterfeiting measures are of ever-increasing importance in society, e.g., for securing the authenticity of and the proof of origin for medical drugs. Here, an arms race of counterfeiters and valid manufacturers is taking place, resulting in the need of hard-to-forget, yet easy-to-read out marks. Anticounterfeiting measures based on micropatterns—while being attractive for their need in not widely available printing methods while still being easily read out with fairly common basic optical equipment—are often limited by being too easy to be destroyed by wear or handling. Here, nature-inspired wettability is rationally exploited for developing an unprecedented anticounterfeiting method, where hidden information can be only identified under direct exposures to an aqueous phase or mist and disappears again on air-drying the interface. A chemically reactive and hierarchically featured dip coating, capable of spatially selective covalent modification with primary amine containing small molecules, is developed for abrasion-tolerant patterning interfaces with two extremes of water wettabilities, i.e., superhydrophilicity and superhydrophobicity. Arbitrary handwriting with glucamine followed by chemical modification with octadecylamine, provided “invisible” text on the synthesized interface. The glucamine-treated region selectively becomes optically transparent and superhydrophilic due to rapid infiltration of the aqueous phase on exposure to liquid water or mist. The remaining interface remains opaque and superhydrophobic due to metastable entrapment of air. The hidden text became transiently and reversibly visible by the naked eye under exposure to liquid water/mist. Furthermore, microchannel-cantilever spotting (μCS) is adopted for demonstrating well-defined chemical patterning on the microscale. These patterns are at the same time highly resistant against wear and scratching because of the bulk functionalization, retaining the wetting properties (and thus pattern readout) even on serious abrasion. Such a simple synthesis of spatially controlled, direct, and covalently modulated wettability could be useful for various applied and fundamental contexts
3D Nanolithography by Means of Lipid Ink Spreading Inhibition
While patterning 2D metallic nanostructures are well established through different techniques, 3D printing still constitutes a major bottleneck on the way to device miniaturization. In this work a fluid phase phospholipid ink is used as a building block for structuring with dip-pen nanolithography. Following a bioinspired approach that relies on ink-spreading inhibition, two processes are presented to build 2D and 3D metallic structures. Serum albumin, a widely used protein with an innate capability to bind to lipids, is the key in both processes. Covering the sample surface with it prior to lipid writing, anchors lipids on the substrate, which ultimately allows the creation of highly stable 3D lipid-based scaffolds to build metallic structures. © 2022 The Authors. Small published by Wiley-VCH GmbH.E.B. acknowledges the Karlsruhe Institute of Technology for a postdoctoral fellowship in the frame of the YIG Prep Pro program and the Spanish Ministry of Science for a Juan de la Cierva Incorporation fellowship. This work was carried out with the support of the Karlsruhe Nano Micro Facility (KNMF, www.knmf.kit.edu), a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT, www.kit.edu). M.H. acknowledges additional support by the Helmholtz Association in the form of a Helmholtz ERC Recognition Award.Peer reviewe
Phospholipid arrays on porous polymer coatings generated by micro-contact spotting
Nanoporous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) (HEMA-EDMA) is used as a 3D mesh for spotting lipid arrays. Its porous structure is an ideal matrix for lipid ink to infiltrate, resulting in higher fluorescent signal intensity as compared to similar arrays on strictly 2D substrates like glass. The embedded lipid arrays show high stability against washing steps, while still being accessible for protein and antibody binding. To characterize binding to polymer-embedded lipids we have applied Streptavidin as well as biologically important biotinylated androgen receptor binding onto 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (Biotinyl Cap PE) and anti-DNP IgE recognition of 2,4-dinitrophenyl[1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[6-[(2,4-dinitrophenyl)amino]hexanoyl] (DNP)] antigen. This approach adds lipid arrays to the range of HEMA polymer applications and makes this solid substrate a very attractive platform for a variety of bio-applications
Evaluation of click chemistry microarrays for immunosensing of alpha-fetoprotein (AFP)
The level of cancer biomarkers in cells, tissues or body fluids can be used for the prediction of the presence of cancer or can even indicate the stage of the disease. Alpha-fetoprotein (AFP) is the most commonly used biomarker for early screening and diagnosis of hepatocellular carcinoma (HCC). Here, a combination of three techniques (click chemistry, the biotin–streptavidin–biotin sandwich strategy and the use of antigen–antibody interactions) were combined to implement a sensitive fluorescent immunosensor for AFP detection. Three types of functionalized glasses (dibenzocyclooctyne- (DBCO-), thiol- and epoxy-terminated surfaces) were biotinylated by employing the respective adequate click chemistry counterparts (biotin–thiol or biotin–azide for the first class, biotin–maleimide or biotin–DBCO for the second class and biotin–amine or biotin–thiol for the third class). The anti-AFP antibody was immobilized on the surfaces via a biotin–streptavidin–biotin sandwich technique. To evaluate the sensing performance of the differently prepared surfaces, fluorescently labeled AFP was spotted onto them via microchannel cantilever spotting (µCS). Based on the fluorescence measurements, the optimal microarray design was found and its sensitivity was determined
Verification Techniques for Cache Coherence Protocols
In this article we present a comprehensive survey of various approaches for the verification of cache coherence protocols based on state enumeration, (symbolic) model checking, and symbolic state models. Since these techniques search the state space of the protocol exhaustively, the amount of memory required to manipulate the state information and the verification time grow very fast with the number of processors and the complexity of the protocol mechanisms. To be successful for systems of arbitrary complexity, a verification technique must solve this so-called state space explosion problem. The emphasis of our discussion is on the underlying theory in each method of handling the state space explosion problem, and formulating and checking the safety properties (e.g., data consistency) and the liveness properties (absence of deadlock and livelock). We compare the efficiency and discuss the limitations of each technique in terms of memory and computation time. Also, we discuss issues of generality, applicability, automaticity, and amenity for existing tools in each class of methods. No method is truly superior because each method has its own strengths and weaknesses. Finally, refinements that can further reduce the verification time and/or the memory requirement are also discussed
Phospholipid arrays on porous polymer coatings generated by micro-contact spotting
Nanoporous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) (HEMA-EDMA) is used as a 3D mesh for spotting lipid arrays. Its porous structure is an ideal matrix for lipid ink to infiltrate, resulting in higher fluorescent signal intensity as compared to similar arrays on strictly 2D substrates like glass. The embedded lipid arrays show high stability against washing steps, while still being accessible for protein and antibody binding. To characterize binding to polymer-embedded lipids we have applied Streptavidin as well as biologically important biotinylated androgen receptor binding onto 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (Biotinyl Cap PE) and anti-DNP IgE recognition of 2,4-dinitrophenyl[1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[6-[(2,4-dinitrophenyl)amino]hexanoyl] (DNP)] antigen. This approach adds lipid arrays to the range of HEMA polymer applications and makes this solid substrate a very attractive platform for a variety of bio-applications
Phospholipid arrays on porous polymer coatings generated by micro-contact spotting
Nanoporous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) (HEMA-EDMA) is used as a 3D mesh for spotting lipid arrays. Its porous structure is an ideal matrix for lipid ink to infiltrate, resulting in higher fluorescent signal intensity as compared to similar arrays on strictly 2D substrates like glass. The embedded lipid arrays show high stability against washing steps, while still being accessible for protein and antibody binding. To characterize binding to polymer-embedded lipids we have applied Streptavidin as well as biologically important biotinylated androgen receptor binding onto 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (Biotinyl Cap PE) and anti-DNP IgE recognition of 2,4-dinitrophenyl[1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[6-[(2,4-dinitrophenyl)amino]hexanoyl] (DNP)] antigen. This approach adds lipid arrays to the range of HEMA polymer applications and makes this solid substrate a very attractive platform for a variety of bio-applications
Dip-Pen Nanolithography-Assisted Protein Crystallization
We
demonstrate the use of dip-pen nanolithography (DPN) to crystallize
proteins on surface-localized functionalized lipid layer arrays. DOPC
lipid layers, containing small amounts of biotin-DOPE lipid molecules,
were printed on glass substrates and evaluated in vapor diffusion
and batch crystallization screening setups, where streptavidin was
used as a model protein for crystallization. Independently of the
crystallization system used and the geometry of the lipid layers,
nucleation of streptavidin crystals occurred specifically on the DPN-printed
biotinylated structures. Protein crystallization on lipid array patches
is also demonstrated in a microfluidic chip, which opens the way toward
high-throughput screening to find suitable nucleation and crystal
growth conditions. The results demonstrate the use of DPN in directing
and inducing protein crystallization on specific surface locations
Thioacetate-based initiators for the synthesis of thiol-end-functionalized poly(2-oxazoline)s
New functional initiators for the cationic ring-opening polymerization of 2-alkyl-2-oxazolines are described to introduce a thiol moiety at the alpha terminus. Both tosylate and nosylate initiators carrying a thioacetate group are obtained in multigram scale, from commercial reagents in two steps, including a phototriggered thiol-ene radical addition. The nosylate derivative gives access to a satisfying control over the cationic ring-opening polymerization of 2-ethyl-2-oxazoline, with dispersity values lower than 1.1 during the entire course of the polymerization, until full conversion. Cleavage of the thioacetate end group is rapidly achieved using triazabicyclodecene, thereby leading to a mercapto terminus. The latter gives access to a new subgeneration of alpha-functional poly(2-oxazoline)s (butyl ester,N-hydroxysuccinimidyl ester, furan) by Michael addition with commercial (meth)acrylates. The amenability of the mercapto-poly(2-ethyl-2-oxazoline) for covalent surface patterning onto acrylated surfaces is demonstrated in a microchannel cantilever spotting (mu CS) experiment, characterized by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary-ion mass spectrometry (ToF-SIMS)