379 research outputs found

    Early age corrosion of mild steel in aggressive media

    No full text
    Effect of exposure time, section type and solution concentration on mild steel early age corrosion was studied. Steel specimens section types were box, tube and corner. They were subjected to 3.5%; 5.0% and 7.0% NaCl solutions. It was established that solution concentration effects the corrosion until reaching the saturation value.Вивчено вплив тривалості експозиції, типу сталевого профілю та концентрації розчину на ранню стадію корозії вуглецевої сталі. Використано сталеві зразки у вигляді куба, трубки та кутника. Досліджували в 3,5-, 5,0- та 7,0%-их розчинах NaCl. Встановлено, що після досягнення граничної концентрації розчину хлориду натрію подальше збільшення вмісту солі не впливає на корозію сталі.Изучено влияние продолжительности экспозиции, типа стального профиля и концентрации раствора на раннюю стадию коррозии углеродистой стали. Использованы стальные образцы в виде куба, трубки и угольника. Исследовали в 3,5-, 5,0- и 7,0%-ых растворах NaCl. Установлено, что после достижения предельной концентрации раствора хлорида натрия, последующее увеличение содержания соли не влияет на коррозию стали

    Comparing potentially avoidable hospitalization rates related to ambulatory care sensitive conditions in Switzerland: the need to refine the definition of health conditions and to adjust for population health status.

    Get PDF
    BACKGROUND: Regional rates of hospitalization for ambulatory care sensitive conditions (ACSC) are used to compare the availability and quality of ambulatory care but the risk adjustment for population health status is often minimal. The objectives of the study was to examine the impact of more extensive risk adjustment on regional comparisons and to investigate the relationship between various area-level factors and the properly adjusted rates. METHODS: Our study is an observational study based on routine data of 2 million anonymous insured in 26 Swiss cantons followed over one or two years. A binomial negative regression was modeled with increasingly detailed information on health status (age and gender only, inpatient diagnoses, outpatient conditions inferred from dispensed drugs and frequency of physician visits). Hospitalizations for ACSC were identified from principal diagnoses detecting 19 conditions, with an updated list of ICD-10 diagnostic codes. Co-morbidities and surgical procedures were used as exclusion criteria to improve the specificity of the detection of potentially avoidable hospitalizations. The impact of the adjustment approaches was measured by changes in the standardized ratios calculated with and without other data besides age and gender. RESULTS: 25% of cases identified by inpatient main diagnoses were removed by applying exclusion criteria. Cantonal ACSC hospitalizations rates varied from to 1.4 to 8.9 per 1,000 insured, per year. Morbidity inferred from diagnoses and drugs dramatically increased the predictive performance, the greatest effect found for conditions linked to an ACSC. More visits were associated with fewer PAH although very high users were at greater risk and subjects who had not consulted at negligible risk. By maximizing health status adjustment, two thirds of the cantons changed their adjusted ratio by more than 10 percent. Cantonal variations remained substantial but unexplained by supply or demand. CONCLUSION: Additional adjustment for health status is required when using ACSC to monitor ambulatory care. Drug-inferred morbidities are a promising approach

    Texture based characterization of sub-skin features by specified laser speckle effects at λ=650nm region

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Objective: The textural structure of “skin age” related sub-skin components enables us to identify and analyse their unique characteristics, thus making substantial progress towards establishing an accurate skin age model. Methods: This is achieved by a two stage process. First by the application of textural analysis using laser speckle imaging, which is sensitive to textural effects within the λ=650 nm spectral band region. In the second stage a Bayesian inference method is used to select attributes from which a predictive model is built. Results: This technique enables us to contrast different skin age models, such as the laser-speckle effect against the more widely used normal light (LED) imaging method, whereby it is shown that our laser speckle based technique yields better results. Conclusion: The method introduced here is non-invasive, low-cost and capable of operating in real-time; having the potential to compete against high-cost instrumentation such as confocal microscopy or similar imaging devices used for skin age identification purposes

    Imitation and Mirror Systems in Robots through Deep Modality Blending Networks

    Full text link
    Learning to interact with the environment not only empowers the agent with manipulation capability but also generates information to facilitate building of action understanding and imitation capabilities. This seems to be a strategy adopted by biological systems, in particular primates, as evidenced by the existence of mirror neurons that seem to be involved in multi-modal action understanding. How to benefit from the interaction experience of the robots to enable understanding actions and goals of other agents is still a challenging question. In this study, we propose a novel method, deep modality blending networks (DMBN), that creates a common latent space from multi-modal experience of a robot by blending multi-modal signals with a stochastic weighting mechanism. We show for the first time that deep learning, when combined with a novel modality blending scheme, can facilitate action recognition and produce structures to sustain anatomical and effect-based imitation capabilities. Our proposed system, can be conditioned on any desired sensory/motor value at any time-step, and can generate a complete multi-modal trajectory consistent with the desired conditioning in parallel avoiding accumulation of prediction errors. We further showed that given desired images from different perspectives, i.e. images generated by the observation of other robots placed on different sides of the table, our system could generate image and joint angle sequences that correspond to either anatomical or effect based imitation behavior. Overall, the proposed DMBN architecture not only serves as a computational model for sustaining mirror neuron-like capabilities, but also stands as a powerful machine learning architecture for high-dimensional multi-modal temporal data with robust retrieval capabilities operating with partial information in one or multiple modalities

    Spatially Selective Assembly of Quantum Dot Light Emitters in an LED Using Engineered Peptides

    Get PDF
    Cataloged from PDF version of article.Semiconductor nanocrystal quantum dots are utilized in numerous applications in nano- and biotechnology. In device applications, where several different material components are involved, quantum dots typically need to be assembled at explicit locations for enhanced functionality. Conventional approaches cannot meet these requirements where assembly of nanocrystals is usually material-nonspecific, thereby limiting the control of their spatial distribution. Here we demonstrate directed self-assembly of quantum dot emitters at material-specific locations in a color-conversion LED containing several material components including a metal, a dielectric, and a semiconductor. We achieve a spatially selective immobilization of quantum dot emitters by using the unique material selectivity characteristics provided by the engineered solid-binding peptides as smart linkers. Peptide-decorated quantum dots exhibited several orders of magnitude higher photoluminescence compared to the control groups, thus, potentially opening up novel ways to advance these photonic platforms in applications ranging from chemical to biodetection. © 2011 American Chemical Society

    Multi-Instrument Observations of an MSTID over Arecibo Observatory

    Get PDF
    The Penn State All-Sky Imager (PSASI) at Arecibo Observatory provides planar horizontal context to the vertical ionospheric profiles obtained by the Incoherent Seatter Radar (TSR). Electric field measurements from the Communication/Navigation Outage Forecast System (C/NOFS) satellite are mapped down geomagnetic field lines to the height of the airglow layer; allowing multi-instrument studies of field-aligned irregularities with radar, imager, and satellite. A Medium-Scale Traveling Ionospheric Disturbance (MSTID) was observed during such a conjunction near the December solstice of 2009

    Genetically-Tunable Mechanical Properties of Bacterial Functional Amyloid Nanofibers

    Get PDF
    Bacterial biofilms are highly ordered, complex, dynamic material systems including cells, carbohydrates, and proteins. They are known to be resistant against chemical, physical, and biological disturbances. These superior properties make them promising candidates for next generation biomaterials. Here we investigated the morphological and mechanical properties (in terms of Young’s modulus) of genetically-engineered bacterial amyloid nanofibers of Escherichia coli (E. coli) by imaging and force spectroscopy conducted via atomic force microscopy (AFM). In particular, we tuned the expression and biochemical properties of the major and minor biofilm proteins of E. coli (CsgA and CsgB, respectively). Using appropriate mutants, amyloid nanofibers constituting biofilm backbones are formed with different combinations of CsgA and CsgB, as well as the optional addition of tagging sequences. AFM imaging and force spectroscopy are used to probe the morphology and measure the Young’s moduli of biofilm protein nanofibers as a function of protein composition. The obtained results reveal that genetically-controlled secretion of biofilm protein components may lead to the rational tuning of Young’s moduli of biofilms as promising candidates at the bionano interface. © 2017 American Chemical Society

    Bio-nanohybrids of quantum dots and photoproteins facilitating strong nonradiative energy transfer

    Get PDF
    Cataloged from PDF version of article.Utilization of light is crucial for the life cycle of many organisms. Also, many organisms can create light by utilizing chemical energy emerged from biochemical reactions. Being the most important structural units of the organisms, proteins play a vital role in the formation of light in the form of bioluminescence. Such photoproteins have been isolated and identified for a long time; the exact mechanism of their bioluminescence is well established. Here we show a biomimetic approach to build a photoprotein based excitonic nanoassembly model system using colloidal quantum dots (QDs) for a new bioluminescent couple to be utilized in biotechnological and photonic applications. We concentrated on the formation mechanism of nanohybrids using a kinetic and thermodynamic approach. Finally we propose a biosensing scheme with an ON/OFF switch using the QD-GFP hybrid. The QD-GFP hybrid system promises strong exciton-exciton coupling between the protein and the quantum dot at a high efficiency level, possessing enhanced capabilities of light harvesting, which may bring new technological opportunities to mimic biophotonic events

    An improvement of skin aging assessment by non-invasive laser speckle effect: A comparative texture analysis

    Get PDF
    Skin aging is a complex biological process that is yet to be successfully modelled as it depends on various internal and external factors. This work therefore investigates novel low-cost skin aging assessment technique and equipment by using robust analysis of textural features unified with a laser-speckle imaging method, which is found to be quite capable of detecting multi-layer cellular textural changes exhibited by the biological skin aging process. This study and low-cost product seem to be the first of its kind, which is expected to bring great benefit to both healthcare and cosmetic sectors
    corecore