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Bio-nanohybrids of quantum dots and photoproteins
facilitating strong nonradiative energy transfer†

Urartu Ozgur Safak Seker,§,‡*ab Evren Mutlugun,‡ab Pedro Ludwig Hernandez-
Martinez,ab Vijay K. Sharma,b Vladimir Lesnyak,{c Nikolai Gaponik,c

Alexander Eychmüllerc and Hilmi Volkan Demir*ab

Utilization of light is crucial for the life cycle of many organisms. Also, many organisms can create light by

utilizing chemical energy emerged from biochemical reactions. Being the most important structural units

of the organisms, proteins play a vital role in the formation of light in the form of bioluminescence. Such

photoproteins have been isolated and identified for a long time; the exact mechanism of their

bioluminescence is well established. Here we show a biomimetic approach to build a photoprotein

based excitonic nanoassembly model system using colloidal quantum dots (QDs) for a new

bioluminescent couple to be utilized in biotechnological and photonic applications. We concentrated on

the formation mechanism of nanohybrids using a kinetic and thermodynamic approach. Finally we

propose a biosensing scheme with an ON/OFF switch using the QD–GFP hybrid. The QD–GFP hybrid

system promises strong exciton–exciton coupling between the protein and the quantum dot at a high

efficiency level, possessing enhanced capabilities of light harvesting, which may bring new technological

opportunities to mimic biophotonic events.
Introduction

Bioluminescence is a biological activity of different organisms
ranging from bacteria to plants.1–4 Unlike the photo-
luminescence and uorescence, bioluminescence is a cold body
radiation triggered by a chemical reaction in the biological
organism. In bioluminescence, a molecule is produced at the
excited state, which nally emits a photon during relaxation.
Among those molecules utilized during bioluminescence, the
green uorescent protein, a well-characterized photoprotein,
which has been widely used in biolabeling, is well known.5,6

GFP and GFP mutants based on Förster-type resonance
energy transfer (FRET) were utilized to track a targeted
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biological event within a living cell, where the FRET processes
between the GFP and its mutants are utilized as reporters.7–9

Naturally occurring systems exhibit their own strength by
means of physical, mechanical and optical properties. They
were formed aer a long evolutionary process, which gave them
strength and exibility. Therefore, photoproteins are unique
owing to simplicity of their synthesis and optical adjustability
through genetic engineering tools. On the other side, techno-
logically improved approaches can solve an actual problem that
nature does not necessarily need to deal with. At this stage,
nanocrystals were synthesized and being offered for utilization
in technological applications.10–12 A hybrid of these two
components offers new possibilities; by using the unique
optical properties of QDs and introducing the exibility, genetic
tenability and biocompatibility of GFP, a promising hybrid
system for biomedical imaging applications and biochemical
applications can be favored. Initial studies have successfully
presented a bionanohybrid approach for the assembly of
protein/photoprotein–QD conjugates.10,13–16 However, investi-
gation of the nanohybrid formation mechanism by means of
the kinetics and thermodynamics of the interaction of the QDs
with proteins will increase the control over the assembly. Such
an investigation may contribute to the understanding of
molecular interactions for future engineering of the nanohybrid
using tools of biochemistry and materials science.

In this study we propose a route to QD–GFP nanohybrid
assembly. Our approach is different from the previous studies
in that, instead of the uorescence intensity measurements that
This journal is ª The Royal Society of Chemistry 2013
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need to be normalized regarding the emitting species,17 and
therefore can be deceptive without a calibration; a more accu-
rate method, time resolved uorescence spectroscopy, was used
to follow emission kinetics of the FRET facilitating species. The
FRET process was characterized to determine donor and
acceptor lifetimes, regardless of the amounts of the FRET
facilitating species. The kinetics and thermodynamics of the
formation of the nano-bio hybrid structure was investigated to
understand how to control the supramolecular interaction
within a nanohybrid. Kinetic investigations also led us to
determine the distance between each components of the
nanohybrid, which was veried theoretically as well. Not only
the kinetic analysis but also X-ray photoemission spectroscopy
and thermogravimetric analysis were carried out to probe the
formation of the GFP–QD nanocomposites. Functional analysis
of the GFP–QDs revealed a high FRET efficiency of 70%, and we
have showed up to 15-fold enhancement in the emission of the
GFP when conjugated with QDs due to the strong excitonic
interaction possessing the nonradiative energy transfer.
Exploiting the strong nonradiative energy transfer within the
nanohybrid, a protease sensor working upon a temperature
dependent ON/OFF switch was demonstrated as a tool for
temperature based protease sensor applications. In this work, a
bottom-up approach for the nanohybrid design, which mimics
the aequorin–GFP pair existing in the jellysh Aequorea victoria,
with high controllability and adjustability promising a wide
range of applicability, is demonstrated.
Experimental section
Preparation of nanocrystals

ZnCdSe quantum dots have been synthesized according to the
previously reported work.18
Expression and purication of GFP-6X-Histag

The gfp gene was rst amplied using P1 and P2 primers (see
ESI†) carrying NcoI and BamHI restriction sites at their 50 ends
respectively. The P2 primer also contained sequences encoding
for the trypsin protease cleavage site (STRTDEG) and Histag
(HHHHHH) at its 30 end. The amplied gene was cloned into a
pet11D vector digested with NcoI/BamHI. Escherichia coli BL21
strain was transformed with pet11D encoding engineered gfp.
Puried engineered GFP was attached to the QD surface
through coordination with Histag.
Quartz crystal microbalance-dissipation analysis

The interaction of the GFP-6X-His with the QDs was tested using
a quartz crystal microbalance Q-Sense E1 (from Q-Sense
Company, Frolunda, Sweden). First the surface of the gold
QCM-D crystals was activated using cysteamine and then using
carbodiimide chemistry, and then QDs were attached to the
functionalized sensor surface. Aer ensuring the attachment of
the QDs from the observation of frequency change, the GFP-6X-
His was own on the surface and the change in the frequency
shi at varying GFP concentrations was recorded.
This journal is ª The Royal Society of Chemistry 2013
Isothermal titration calorimetry

Experiments were carried out using Microcal 200 equipment
(GE Healthcare, Austria). Quantum dots at 15 mM concentra-
tions were kept in a titration vessel while the 150 mM GFP-6X-
Histag was injected into the QD colloid. The thermal titration
was performed at 25 �C and in 0.5� PBS buffer at 500 rpm. ITC
data were tted to a single interaction function using Origin 7
supplied along with the ITC200. Following the runs, the
instrument was automatically and manually cleaned with
methanol, detergent and DI water.

Time-resolved photoluminescence

Experiments were performed using a PicoQuant Fluo Time 200
time-correlated single photon counting system. A laser diode
operating at 375 nm has a repetition rate of 80 MHz with 200 ps
width. The lifetimes have been extracted using the data acqui-
sition soware PicoHarp 300 with a <10 ps lifetime resolution.

Steady-state photoluminescence and absorption

A Cary Eclipse uorescence spectrometer and a Cary UV-Vis
spectrometer were used in the experiments.

Results and discussions
Kinetic and thermodynamic analysis of GFP–QD nanohybrid
formation

In order to investigate the interaction modes between the QDs
and GFP, we carried out a quartz crystal microbalance (QCM-D)
based affinity analysis where we monitored the binding kinetics
of the GFP molecules on the surface decorated with QDs as
presented.19 In this setup, ZnCdSe QDs were rst immobilized
on the gold surface of the QCM-D sensor by means of carbo-
diimide mediated covalent bonding. The unlled parts of the
sensor were blocked with 1 mM ethanolamine to prevent the
nonspecic attachment of the QDs on the modied sensor
surface. Following the coverage of the QCM-D sensor surface,
the GFP-6X-His molecule was sent into the ow cell of the QCM-
D where the QD functionalized sensors were placed. The
adsorption and desorption of the molecules were monitored for
ve varying concentrations of GFP-6X-His, ranging from 2 to
10 mM. The interaction analysis was carried out using a simple
interaction model, which yielded an affinity constant of 0.9 mM,
indicating a strong interaction between the GFP-6X-His and QD.
QCM-D does not only provide the binding isotherms but also
gives the dissipation data of the adsorbed GFP layer on QDs.
The dissipation data indicate here that the interaction between
the QDs and GFP-6X-His resulted in the formation of a GFP lm
on top of the QDs without denaturation of the GFP.

Using the dissipation data (Fig. 1a) for tting to a Voigt
viscoelastic model,20 the thickness of the GFP lm was calcu-
lated to be as high as �3 nm (see Fig. 1b). Considering the GFP
has a barrel structure composed of sheets and helices with a
total diameter of 30 to 40 Å,21 the results suggest that the GFP-
6X-His molecules interact with the QDs via the longer side of the
barrel, as represented in Fig. 1b. Also, the dissipation change
throughout the interaction experiment suggests that the
Nanoscale, 2013, 5, 7034–7040 | 7035
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Fig. 1 QCM-D analysis of the binding of QDs and GFP-6X-His in a sequential manner. (a) Frequency shift upon adsorption of quantum dots and GFP-6X-His (blue line) with
a viscoelastic model fit (red line) and dissipation change upon adsorption of the nonentities and GFP on a cysteamine modified gold electrode (green line) along with the
viscoelastic model fit (purple line). (b) Thickness monitoring of the layer-by-layer assembly of the QDs and GFP-6X-His. (c) ITC titration curves of GFP-6X-His onto QDs after
each injection. (d) Calculated area under the ITC titration curves and model fitting of a single interaction model using the software provided along with the instrument.
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QD–GFP lm entraps water molecules, preventing the GFP from
denaturation upon interaction with the semiconductor surface,
which otherwise would lead to improper FRET distance between
the QD–GFP.

Since the nal design of the QD–GFP nanohybrids is water
dispersible colloidal entities, besides conrming the thickness
of GFP and its affinity on a solid surface, a solution based
biophysical approach, isothermal titration calorimetry (ITC)
was employed to probe the strength of the interaction between
QD–GFP. In the experimental setup GFP-6X-His was injected
into the ZnCdSe QD solution placed in a reaction chamber
made up of a biologically inert alloy. Aer each injection of the
GFP into the reaction chamber of ITC, released energy upon
GFP's interaction with QDs was recorded as given in Fig. 1c.
Peak areas were calculated and tted to an interaction model
supplied by Origin soware, which is shown in Fig. 1d. From
the single mode interaction model, the enthalpy of binding for
the QDs and GFP-6X-His was calculated to be �82 kcal mol�1.
Although this is a high amount of energy release, we observed a
lower affinity desorption constant of 17 mM compared to the
QCM-D analysis. This indicates different modes of binding in
both experimental cases. The difference in the binding mech-
anismmay arise due to the higher local concentration of QDs in
the lm as compared to the solution, and these facts may be
facilitated by the interaction of the GFPmolecules with the QDs.
Additionally, through the interaction of the adjacent protein
7036 | Nanoscale, 2013, 5, 7034–7040
molecules, amounts of proteins adsorbed on the QD surface can
be increased.

Although we have strong evidence of the interactions
between GFP-6X-His and ZnCdSe QDs, we further investigated
the chemical interactions of the GFP with the QDs at the atomic
level using the X-ray photoemission spectroscopy (XPS). As
presented in XPS data in the ESI,† the high resolution C 1s & O
1s spectra of the GFP, ZnCdSe QDs, and the composite were
acquired. Due to the changes in the XPS spectrum of the GFP–
QD mixture and the existence of an additional peak compared
to the GFP and QD alone, we suspect that the imidazole ring of
the histidine tag at the end of GFP gets in contact with the QDs
through supramolecular interactions.
Experimental and theoretical analysis of nonradiative energy
transfer in the GFP–QD nanohybrid

Energy transfer mediated light harvesting was rst performed
under steady state conditions. Later, time-resolved photo-
luminescence measurements were employed to monitor the
energy transfer. The steady state measurements demonstrate
the effect of the energy transfer from the QDs (D) to GFP (A).
As the A/D ratio is increased, we observe a decrease of the
emission intensity of the donor QDs, whereas an increase in
the acceptor emission is observed as a result of energy feeding
from the donor side. A spectral overlap between the emission
This journal is ª The Royal Society of Chemistry 2013
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Fig. 2 (a) Spectral overlap of ZnCdSe QDs and GFP, the red line shows the absorption spectrum of the GFP and the blue shadowed area represents the emission
spectrum of the ZnCdSe QDs. (b) Photoluminescence spectra of the donor–acceptor QD–GFP system with changing A/D concentration ratio (excitation at 315 nm). (c)
Time-resolved photoluminescence decays of the donor, changing with the A/D ratio (at 422 nm). (d) Donor lifetimes, extracted from time-resolved photoluminescence
decays, and theoretically predicted, as a function of the A/D ratio. (e) Time-resolved photoluminescence decays of the acceptor changing with the A/D ratio
(at 508 nm). (f) Acceptor lifetimes, extracted from time-resolved photoluminescence decays, as a function of the A/D ratio.
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of the QDs (with an emission maximum at 422 nm) and the
optical absorption of GFP (maxima at 395 nm and 475 nm)
was veried to satisfy FRET as presented in Fig. 2a. Steady
state uorescence measurements were performed to monitor
any changes in the emission of QDs and GFP before
their interactions as well the emission of the nanohybrid
structure with the excitation monochromator set at 315 nm.
The photoluminescence measurements of the quantum dot-
protein composite are shown in Fig. 2b. The enhancement of
the pure acceptor emission is extracted from the steady state
emission data of the GFP in the presence and absence of the
donor QDs.

To demonstrate the excitation of the GFP well beyond its
absorption, we chose the excitation wavelength at 315 nm, in
order to satisfy the spectral overlap conditions at the expec-
ted maximum efficiency (ESI Fig. S5†). The enhancement of
the acceptor emission was calculated as a function of the
acceptor concentration, and presented as the A/D concen-
tration ratio.
This journal is ª The Royal Society of Chemistry 2013
Enhancement ¼

ð620
480

IDA ðlÞdl

ð620
480

IAðlÞdl
� 1

2
66666664

3
77777775

(1)

Here, IA is the intensity of the acceptor GFP in the absence of the
donor QDs and IDA is the intensity of the acceptor in the presence
of the donor. The wavelength interval from 480 to 620 nm was
chosen since the emission spectrum of GFP lies within this
region. Carrying out the analysis, we observed an enhancement
of the acceptor photoluminescence of up to 15 fold correspond-
ing to an A/D ratio of�5, which is consistent with the geometrical
factors given the size of the GFP and the QDs. As the amount of
GFP is further increased, the overall enhancement decreases
because the system is converging to the case of acceptor only.

Using time-resolved photoluminescence spectroscopy
uorescence emission lifetimes of the donor, the acceptor
Nanoscale, 2013, 5, 7034–7040 | 7037
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and the hybrid were monitored at the donor and the acceptor
emission wavelengths, 422 and 508 nm, respectively given
in Fig. 2c–f. A dramatic change in the QD uorescence life-
time was noted while changing the GFP concentration
and keeping the QD concentration the same, which points at
an efficient nonradiative energy transfer from QDs to
GFP. Starting with the A/D concentration ratio of 0.96, we
observed the photoluminescence decays getting faster with
increasing A/D ratio up to 32.6, where we observed adsorption
saturation.

The lifetime modication kinetics of both the donor and
acceptor with respect to any change of any given FRET pair was
found to follow a biexponential behaviour. The lifetime of the
donor changes from 10.33 to 2.91 ns as we increase the A/D
concentration ratio. Similarly, we carried out the lifetime
measurements for the acceptor molecules, where a dramatic
increase in the acceptor lifetime was observed because of the
energy feeding from the donor to the acceptor. Throughout the
A/D ratios we explored, an increase in the acceptor lifetime was
observed. We measured lifetime modications ranging from
3.57 to 4.67 ns for the GFP (the bare lifetime of the GFP, 3.11 ns,
is shown with the dotted line in Fig. 2f). The trend of the
modication of the lifetime is as expected due to the fact that as
we increase the acceptor to donor concentration, we decrease
the energy transferred per acceptor, thus the system is evolving
to acceptor only case, which is in agreement with the experi-
mental observation.

The observed FRET efficiency due to the dipole interaction of
the donor–acceptor pairs was calculated using eqn (2)

h ¼ 1� sDA

sD
(2)

where sDA is the lifetime of the donor in the presence of the
acceptor and sD is the bare lifetime of the donor. As a result of
the energy transfer, we observed FRET efficiencies of up to
70% for our QD–GFP complex. In connection with the theo-
retical model based on the dipole–dipole interaction, the
efficiency levels are in good agreement with the experimentally
observed values. In the theoretical approach, we considered
energy transfer from ZnCdSe QDs to multiple GFP molecules
under exciton–exciton interaction. Within the simplest rate
model, the number of excitons (Nexc) generated in the QD,
under constant illumination (steady-state condition), is
given by:22

�(gD
exc + gtot

trans)N
D
exc + ID ¼ 0 (3)

where ND
exc is the number of excitons in the donor, ID is the

exciton generation rate due to the light excitation, and gD
exc ¼

gD
exc,rad + gD

exc,non-rad is the donor exciton recombination rate in
the absence of the acceptor. gD

exc,rad and gD
exc,non-rad are the

radiative and nonradiative decay rates, respectively. gtot
trans ¼

ngtrans is the total energy transfer rate between the donor and
multiple acceptors. n is the number of acceptors and gtrans is the
energy transfer between one donor and one acceptor. By
substituting into eqn (3), it can be written as:

�(gD
exc + ngtrans)N

D
exc + ID ¼ 0 (4)
7038 | Nanoscale, 2013, 5, 7034–7040
One then denes:

gD
DA ¼ (gD

exc + ngtrans) (5)

where gD
DA is the donor exciton lifetime in the presence of energy

transfer. For the energy transfer rate between ZnCdSe QDs and
GFP,

gtrans ¼ gD
exc

�
R0

r

�6

(6)

where R0 is the Förster radius for the D–A pair and r is the
separation distance between ZnCdSe QDs and GFP. Therefore
eqn (5) is given by

gD
DA ¼ gD

exc

 
1þ n

�
R0

r

�6
!

(7)

In terms of lifetimes,

sDDA ¼ sDexc

1þ n

�
R0

r

�6
(8)

Here using experimental data, we extracted the effective
distance between the QD–GFP to be 5.49 nm on average, which
is reasonable when compared with the QD diameter of 4 nm
and GFP diameter of �3 nm.

The enhancement in the FRET efficiencies does not directly
reect the observed light harvesting enhancement. This is
because, as more and more acceptors are introduced, there are
more non-radiative channels created for the donor to transfer
energy, which results in high FRET efficiencies. On the other
side, the light harvesting is optimal up to a certain number of
acceptors per given donor (�5:1, for our system). When the A/D
ratio is further increased, the amount of light harvesting is
decreased, since the system is evolving towards an acceptor only
system.

QD–GFP based protease sensor with a thermal ON/OFF switch

The well-established FRET process in the GFP–QD nano-
composite is utilized as a protease sensor with a ON/OFF state
temperature switch as shown in Fig. 3a. As the FRET process
strongly depends on the distance between the donor and
acceptor species, any modication in the distance between the
species will be reected in the lifetime of the donor and
acceptor facilitating FRET. In the current QD–GFP system, it is
suitable to detect trypsin protease available in the reaction
medium. The lifetime of FRET facilitating QDs and GFP was
modied upon digestion of the linker between the Histag and
GFP through protease activation. Changing the enzyme
concentration in solution, we observe that the lifetime of the
QD–GFP complex follows a trend of decreasing back to the
initial GFP lifetime, as follows from Fig. 3b and d. This enables
us to use the enzymatic activity to increase the distance among
the donor–acceptor pair and thus control the FRET efficiency
(Fig. 3a). As the optimum working condition of the trypsin
protease is at 37 �C, below this point through the deactivation of
the protease no modication of the lifetime of the acceptor was
This journal is ª The Royal Society of Chemistry 2013
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Fig. 3 (a) Schematic representation of the ON/OFF state sensing of the nanohybrid structure in response to the protease action triggered by temperature. (b)
Photoluminescence decays of the GFP only, GFP with FRET, and GFP in the ON state of the enzyme. (c) Photoluminescence decays of the GFP only, GFP with FRET, and
GFP in the OFF state. (d) Lifetime modifications of the GFP only, GFP with FRET, and GFP after enzyme action.

Paper Nanoscale

Pu
bl

is
he

d 
on

 2
1 

M
ay

 2
01

3.
 D

ow
nl

oa
de

d 
on

 0
3/

12
/2

01
3 

09
:0

5:
55

. 
View Article Online
observed as shown in Fig. 3b. The control experiments were
followed in the same manner except for the heat treatment.
Conclusions

We have shown the excitonic composite structures of QD–GFP
complexes. The FRET-mediated light harvesting in this
composite resulted in up to 15-fold enhancement in the emission
of the acceptor protein. The lifetime modications of the donor–
acceptor pair have been supported by the theoretical analysis
based on dipole–dipole interaction. Furthermore, the trypsin
enzyme was implemented for controlling the energy transfer,
breaking the bond in between the QDs and the protein, as a
promising tool for the development of the next generation
nanosensor coupled with functional proteins. This research area
is especially important for showing new functionalities and
opportunities for protein-QD based assemblies to be utilized in
bioimaging and targeted delivery applications in biomedicine.
The capability of tuning the QD uorescence using the func-
tionalities of the coupled proteins will be useful not only for
targeted drug delivery but also for guided diagnostics-treatment.

Cytotoxicity and biological incompatibility are main draw-
backs for the utilization of QDs for biological and medical
applications.23 Utilization of QD-photoproteins nanohybrids
can overcome this problem. QD–GFP nanohybrids benet from
the biocompatibility of GFP and long uorescent lifetime of
QDs. The QD–GFP nanohybrid could be a promising tool for
bioimaging with enhanced functionality. Additionally, the ease
This journal is ª The Royal Society of Chemistry 2013
of tunability of their biochemical and optical properties
through protein engineering makes photoproteins better
candidates for coupling with QDs compared to currently avail-
able synthetic dyes.

With the current approach ZnCdSe QDs are also shown to be
good candidates for the excitation of the photoproteins. One of
the most important contributions was made for replacing
chemiluminescence to pump a photoprotein with a QD based
FRET system. Considering the strong optical emission proper-
ties and uorescence lifetime of QDs, this approach provides an
opportunity for a more efficient and exible emission
enhancement for photoproteins. However, there are still chal-
lenges including potential toxicity risk induced by the QDs to
biological systems and the issue of designing better linkers to
control the attachment of photoproteins to QDs.

Hybridization of the photoprotein or other proteins with the
nanostructures may enable opportunities to build functional
assemblies. Not only the photoproteins but also many enzymes
and proteins involved in photo-activated biological events can
be tuned and enhanced by using light harvesting nanoparticles.
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