32 research outputs found

    ゲノムワイド関連解析による真性過眠症の新規疾患感受性領域の同定

    Get PDF
    学位の種別:課程博士University of Tokyo(東京大学

    HLA-VBSeq v2: improved HLA calling accuracy with full-length Japanese class-I panel

    Get PDF
    HLA-VBSeq is an HLA calling tool developed to infer the most likely HLA types from high-throughput sequencing data. However, there is still room for improvement in specific genetic groups because of the diversity of HLA alleles in human populations. Here, we present HLA-VBSeq v2, a software application that makes use of a new Japanese HLA reference panel to enhance calling accuracy for Japanese HLA class-I genes. Our analysis showed significant improvements in calling accuracy in all HLA regions, with prediction accuracies achieving over 99.0, 97.8, and 99.8% in HLA-A, B and C, respectively

    Analysis of whole Y-chromosome sequences reveals the Japanese population history in the Jomon period

    Get PDF
    UTokyo FOCUS Press releases "Archaeological mystery solved with modern genetics : Y chromosomes reveal population boom and bust in ancient Japan" https://www.u-tokyo.ac.jp/focus/en/press/z0508_00056.htm

    Narcolepsy risk loci outline role of T cell autoimmunity and infectious triggers in narcolepsy

    Get PDF
    Narcolepsy has genetic and environmental risk factors, but the specific genetic risk loci and interaction with environmental triggers are not well understood. Here, the authors identify genetic loci for narcolepsy, suggesting infection as a trigger and dendritic and helper T cell involvement. Narcolepsy type 1 (NT1) is caused by a loss of hypocretin/orexin transmission. Risk factors include pandemic 2009 H1N1 influenza A infection and immunization with Pandemrix (R). Here, we dissect disease mechanisms and interactions with environmental triggers in a multi-ethnic sample of 6,073 cases and 84,856 controls. We fine-mapped GWAS signals within HLA (DQ0602, DQB1*03:01 and DPB1*04:02) and discovered seven novel associations (CD207, NAB1, IKZF4-ERBB3, CTSC, DENND1B, SIRPG, PRF1). Significant signals at TRA and DQB1*06:02 loci were found in 245 vaccination-related cases, who also shared polygenic risk. T cell receptor associations in NT1 modulated TRAJ*24, TRAJ*28 and TRBV*4-2 chain-usage. Partitioned heritability and immune cell enrichment analyses found genetic signals to be driven by dendritic and helper T cells. Lastly comorbidity analysis using data from FinnGen, suggests shared effects between NT1 and other autoimmune diseases. NT1 genetic variants shape autoimmunity and response to environmental triggers, including influenza A infection and immunization with Pandemrix (R)

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    Identification of HLA-DRB1*04:10 allele as risk allele for Japanese moyamoya disease and its association with autoimmune thyroid disease: A case-control study.

    No full text
    Background and purposeMoyamoya disease (MMD) is a progressive cerebrovascular disease with unknown etiology. Growing evidence suggest its involvement of autoimmune and genetic mechanisms in the pathogenesis of MMD. This study aims to clarify the association between HLA allele and MMD.MethodsCase-control study: the DNA of 136 MMD patients in Japan was extracted and the genotype of human leukocyte antigen (HLA) from this DNA was determined by super-high-resolution single-molecule sequence-based typing using next-generation sequencing. Next, the frequency of each HLA allele (HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1, and HLA-DPB1) was compared with those in the Japanese control database. In addition, haplotype estimation was performed using the expectation maximization algorithm.ResultsThe frequencies of the HLA-DRB1*04:10 allele (4.77% vs. 1.47% in the control group; P = 1.7 × 10-3; odds ratio [OR] = 3.35) and of the HLA-DRB1*04:10-HLA-DQB1*04:02 haplotype (haplotype frequency 4.41% vs. 1.35% in the control group; P = 2.0 × 10-3; OR = 3.37) significantly increased. The frequency of thyroid diseases, such as Graves' disease and Hashimoto thyroiditis, increased in HLA-DRB1*04:10-positive MMD patients compared with that in HLA-DRB1*04:10-negative MMD patients.ConclusionsHLA-DRB1*04:10 is a risk allele and HLA-DRB1*04:10-HLA-DQB1*04:02 a risk haplotype for MMD. In addition, HLA-DRB1*04:10 is associated with thyroid disease in MMD patients
    corecore