7,311 research outputs found
Evaluation of selected chemical processes for production of low-cost silicon, phase 3
A Process Development Unit (PDU), which consisted of the four major units of the process, was designed, installed, and experimentally operated. The PDU was sized to 50MT/Yr. The deposition took place in a fluidized bed reactor. As a consequences of the experiments, improvements in the design an operation of these units were undertaken and their experimental limitations were partially established. A parallel program of experimental work demonstrated that Zinc can be vaporized for introduction into the fluidized bed reactor, by direct induction-coupled r.f. energy. Residual zinc in the product can be removed by heat treatment below the melting point of silicon. Current efficiencies of 94 percent and above, and power efficiencies around 40 percent are achievable in the laboratory-scale electrolysis of ZnCl2
Hydrodynamic lift on bound vesicles
Bound vesicles subject to lateral forces such as arising from shear flow are
investigated theoretically by combining a lubrication analysis of the bound
part with a scaling approach to the global motion. A minor inclination of the
bound part leads to significant lift due to the additive effects of lateral and
tank-treading motions. With increasing shear rate, the vesicle unbinds from the
substrate at a critical value. Estimates are in agreement with recent
experimental data.Comment: 9 pages, one figur
Ab initio simulations of liquid systems: Concentration dependence of the electric conductivity of NaSn alloys
Liquid NaSn alloys in five different compositions (20, 40, 50, 57 and 80%
sodium) are studied using density functional calculations combined with
molecular dynamics(Car-Parrinello method). The frequency-dependent electric
conductivities for the systems are calculated by means of the Kubo-Greenwood
formula.
The extrapolated DC conductivities are in good agreement with the
experimental data and reproduce the strong variation with the concentration.
The maximum of conductivity is obtained, in agreement with experiment, near the
equimolar composition.
The strong variation of conductivity, ranging from almost semiconducting up
to metallic behaviour, can be understood by an analysis of the
densities-of-states.Comment: LaTex 6 pages and 2 figures, to appear in J.Phys. Cond. Ma
Tubular structures of GaS
In this Brief Report we demonstrate, using density-functional tight-binding theory, that gallium sulfide (GaS) tubular nanostructures are stable and energetically viable. The GaS-based nanotubes have a semiconducting direct gap which grows towards the value of two-dimensional hexagonal GaS sheet and is in contrast to carbon nanotubes largely independent of chirality. We further report on the mechanical properties of the GaS-based nanotubes
A general variational principle for spherically symmetric perturbations in diffeomorphism covariant theories
We present a general method for the analysis of the stability of static,
spherically symmetric solutions to spherically symmetric perturbations in an
arbitrary diffeomorphism covariant Lagrangian field theory. Our method involves
fixing the gauge and solving the linearized gravitational field equations to
eliminate the metric perturbation variable in terms of the matter variables. In
a wide class of cases--which include f(R) gravity, the Einstein-aether theory
of Jacobson and Mattingly, and Bekenstein's TeVeS theory--the remaining
perturbation equations for the matter fields are second order in time. We show
how the symplectic current arising from the original Lagrangian gives rise to a
symmetric bilinear form on the variables of the reduced theory. If this
bilinear form is positive definite, it provides an inner product that puts the
equations of motion of the reduced theory into a self-adjoint form. A
variational principle can then be written down immediately, from which
stability can be tested readily. We illustrate our method in the case of
Einstein's equation with perfect fluid matter, thereby re-deriving, in a
systematic manner, Chandrasekhar's variational principle for radial
oscillations of spherically symmetric stars. In a subsequent paper, we will
apply our analysis to f(R) gravity, the Einstein-aether theory, and
Bekenstein's TeVeS theory.Comment: 13 pages; submitted to Phys. Rev. D. v2: changed formatting, added
conclusion, corrected sign convention
Stability of spherically symmetric solutions in modified theories of gravity
In recent years, a number of alternative theories of gravity have been
proposed as possible resolutions of certain cosmological problems or as toy
models for possible but heretofore unobserved effects. However, the
implications of such theories for the stability of structures such as stars
have not been fully investigated. We use our "generalized variational
principle", described in a previous work, to analyze the stability of static
spherically symmetric solutions to spherically symmetric perturbations in three
such alternative theories: Carroll et al.'s f(R) gravity, Jacobson &
Mattingly's "Einstein-aether theory", and Bekenstein's TeVeS. We find that in
the presence of matter, f(R) gravity is highly unstable; that the stability
conditions for spherically symmetric curved vacuum Einstein-aether backgrounds
are the same as those for linearized stability about flat spacetime, with one
exceptional case; and that the "kinetic terms" of vacuum TeVeS are indefinite
in a curved background, leading to an instability.Comment: ReVTex; 20 pages, 3 figures. v2: references added, submitted to PRD;
v3: expanded discussion of TeVeS; v4: minor typos corrected (version to
appear in PRD
Near-Field Microwave Microscopy on nanometer length scales
The Near-Field Microwave Microscope (NSMM) can be used to measure ohmic
losses of metallic thin films. We report on the presence of a new length scale
in the probe-to- sample interaction for the NSMM. We observe that this length
scale plays an important role when the tip to sample separation is less than
about 10nm. Its origin can be modeled as a tiny protrusion at the end of the
tip. The protrusion causes deviation from a logarithmic increase of capacitance
versus decreasing height of the probe above the sample. We model this
protrusion as a cone at the end of a sphere above an infinite plane. By fitting
the frequency shift of the resonator versus height data (which is directly
related to capacitance versus height) for our experimental setup, we find the
protrusion size to be 3nm to 5nm. For one particular tip, the frequency shift
of the NSMM relative to 2 micrometers away saturates at a value of about -1150
kHz at a height of 1nm above the sample, where the nominal range of sheet
resistance values of the sample are 15 ohms to 150 ohms. Without the
protrusion, the frequency shift would have followed the logarithmic dependence
and reached a value of about -1500 kHz.Comment: 6 pages, 7 figures (included in 6 pages
Bilayer Membrane in Confined Geometry: Interlayer Slide and Steric Repulsion
We derived free energy functional of a bilayer lipid membrane from the first
principles of elasticity theory. The model explicitly includes
position-dependent mutual slide of monolayers and bending deformation. Our free
energy functional of liquid-crystalline membrane allows for incompressibility
of the membrane and vanishing of the in-plane shear modulus and obeys
reflectional and rotational symmetries of the flat bilayer. Interlayer slide at
the mid-plane of the membrane results in local difference of surface densities
of the monolayers. The slide amplitude directly enters free energy via the
strain tensor. For small bending deformations the ratio between bending modulus
and area compression coefficient, Kb/KA, is proportional to the square of
monolayer thickness, h. Using the functional we performed self-consistent
calculation of steric potential acting on bilayer between parallel confining
walls separated by distance 2d. We found that temperature-dependent curvature
at the minimum of confining potential is enhanced four times for a bilayer with
slide as compared with a unit bilayer. We also calculate viscous modes of
bilayer membrane between confining walls. Pure bending of the membrane is
investigated, which is decoupled from area dilation at small amplitudes. Three
sources of viscous dissipation are considered: water and membrane viscosities
and interlayer drag. Dispersion has two branches. Confinement between the walls
modifies the bending mode with respect to membrane in bulk solution.
Simultaneously, inter-layer slipping mode, damped by viscous drag, remains
unchanged by confinement.Comment: 23 pages,3 figures, pd
Effective Confinement as Origin of the Equivalence of Kinetic Temperature and Fluctuation-Dissipation Ratio in a Dense Shear Driven Suspension
We study response and velocity autocorrelation functions for a tagged
particle in a shear driven suspension governed by underdamped stochastic
dynamics. We follow the idea of an effective confinement in dense suspensions
and exploit a time-scale separation between particle reorganization and
vibrational motion. This allows us to approximately derive the
fluctuation-dissipation theorem in a "hybrid" form involving the kinetic
temperature as an effective temperature and an additive correction term. We
show numerically that even in a moderately dense suspension the latter is
negligible. We discuss similarities and differences with a simple toy model, a
single trapped particle in shear flow
- …