796 research outputs found

    A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices

    Full text link
    Improvement of thermoelectric systems in terms of performance and range of applications relies on progress in materials science and optimization of device operation. In this chapter, we focuse on optimization by taking into account the interaction of the system with its environment. For this purpose, we consider the illustrative case of a thermoelectric generator coupled to two temperature baths via heat exchangers characterized by a thermal resistance, and we analyze its working conditions. Our main message is that both electrical and thermal impedance matching conditions must be met for optimal device performance. Our analysis is fundamentally based on linear nonequilibrium thermodynamics using the force-flux formalism. An outlook on mesoscopic systems is also given.Comment: Chapter 14 in "Thermoelectric Nanomaterials", Editors Kunihito Koumoto and Takao Mori, Springer Series in Materials Science Volume 182 (2013

    Understanding the nature of "superhard graphite"

    Get PDF
    Numerous experiments showed that on cold compression graphite transforms into a new superhard and transparent allotrope. Several structures with different topologies have been proposed for this phase. While experimental data are consistent with these models, the only way to solve this puzzle is to find which structure is kinetically easiest to form. Using state-of-the-art molecular-dynamics transition path sampling simulations, we investigate kinetic pathways of the pressure-induced transformation of graphite to various superhard candidate structures. Unlike hitherto applied methods for elucidating nature of superhard graphite, transition path sampling realistically models nucleation events necessary for physically meaningful transformation kinetics. We demonstrate that nucleation mechanism and kinetics lead to MM-carbon as the final product. WW-carbon, initially competitor to MM-carbon, is ruled out by phase growth. Bct-C4_4 structure is not expected to be produced by cold compression due to less probable nucleation and higher barrier of formation

    Current CONtrolled Transmit And Receive Coil Elements (C2ONTAR) for Parallel Acquisition and Parallel Excitation Techniques at High-Field MRI

    Get PDF
    A novel intrinsically decoupled transmit and receive radio-frequency coil element is presented for applications in parallel imaging and parallel excitation techniques in high-field magnetic resonance imaging. Decoupling is achieved by a twofold strategy: during transmission elements are driven by current sources, while during signal reception resonant elements are switched to a high input impedance preamplifier. To avoid B0 distortions by magnetic impurities or DC currents a resonant transmission line is used to relocate electronic components from the vicinity of the imaged object. The performance of a four-element array for 3 T magnetic resonance tomograph is analyzed by means of simulation, measurements of electromagnetic fields and bench experiments. The feasibility of parallel acquisition and parallel excitation is demonstrated and compared to that of a conventional power source-driven array of equivalent geometry. Due to their intrinsic decoupling the current-controlled elements are ideal basic building blocks for multi-element transmit and receive arrays of flexible geometry

    Long acting risperidone in Australian patients with chronic schizophrenia: 24-month data from the e-STAR database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This observational study was designed to collect treatment outcomes data in patients using the electronic Schizophrenia Treatment Adherence Registry (e-STAR).</p> <p>Methods</p> <p>Patients with schizophrenia or schizoaffective disorder in Australia who were prescribed risperidone long-acting injection (RLAI) between 2003 and 2007 were assessed 12-months retrospectively, at baseline and 24-months prospectively at 3-monthly intervals. The intent-to-treat population, defined as all patients who received at least one dose of RLAI at baseline, was used for the efficacy and safety analyses.</p> <p>Results</p> <p>At total of 784 patients (74% with schizophrenia, 69.8% male) with a mean age of 37.1 ± 12.5 years and 10.6 ± 9.5 years since diagnosis were included in this Australian cohort. A significant improvement in mean Clinical Global Impression - severity score was observed at 24-months (4.52 ± 1.04 at baseline, 3.56 ± 1.10 at 24-months). Most of this improvement was seen by 3-months and was also reflected in mean Global Assessment of Functioning score, which improved significantly at 24-months (42.9 ± 14.5 at baseline, 59 ± 15.4 at 24-months). For patients still receiving RLAI at 24-months there was an increase from a mean baseline RLAI dose of 26.4 ± 5 mg to 43.4 ± 15.7 mg. Sixty-six percent of patients discontinued RLAI before the 24-month period--this decreased to 46% once patients lost to follow-up were excluded.</p> <p>Conclusion</p> <p>Over the 24-month period, initiation of RLAI was associated with improved patient functioning and illness severity in patients with schizophrenia or schizoaffective disorder. Improved outcomes were observed early and sustained throughout the study.</p> <p>Trial Registration</p> <p>Clinical Trials Registration Number, <a href="http://www.clinicaltrials.gov/ct2/show/NCT00283517">NCT00283517</a>.</p

    Arabinogalactan-protein and pectin epitopes in relation to an extracellular matrix surface network and somatic embryogenesis and callogenesis in Trifolium nigrescens Viv

    Get PDF
    The formation of an extracellular matrix surface network (ECMSN), and associated changes in the distribution of arabinogalactan-protein and pectin epitopes, have been studied during somatic embryogenesis (SE) and callogenesis of Trifolium nigrescens Viv. Scanning electron microscopy observations revealed the occurrence of an ECMSN on the surface of cotyledonary-staged somatic embryos as well as on the peripheral, non-regenerating callus cells. The occurrence of six AGP (JIM4, JIM8, JIM13, JIM16, LM2, MAC207) and four pectin (JIM5, JIM7, LM5, LM6) epitopes was analysed during early stages of SE, in cotyledonary-staged somatic embryos and in non-embryogenic callus using monoclonal antibodies. The JIM5 low methyl-esterified homogalacturonan (HG) epitope localized to ECMSN on the callus surface but none of the epitopes studied were found to localize to ECMSN over mature somatic embryos. The LM2 AGP epitope was detected during the development of somatic embryos and was also observed in the cell walls of meristematic cells from which SE was initiated. The pectic epitopes JIM5, JIM7, LM5 and LM6 were temporally regulated during SE. The LM6 arabinan epitope, carried by side chains of rhamnogalacturonan-I (RG-I), was detected predominantly in cells of embryogenic swellings, whilst the LM5 galactan epitope of RG-I was uniformly distributed throughout the ground tissue of cotyledonary-staged embryoids but not detected at the early stages of SE. Differences in the distribution patterns of low and high methyl-esterified HG were detected: low ester HG (JIM5 epitope) was most abundant during the early steps of embryo formation and highly methyl-esterified form of HG (JIM7 epitope) became prevalent during embryoid maturation

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    A Rice Plastidial Nucleotide Sugar Epimerase Is Involved in Galactolipid Biosynthesis and Improves Photosynthetic Efficiency

    Get PDF
    Photosynthesis is the final determinator for crop yield. To gain insight into genes controlling photosynthetic capacity, we selected from our large T-DNA mutant population a rice stunted growth mutant with decreased carbon assimilate and yield production named photoassimilate defective1 (phd1). Molecular and biochemical analyses revealed that PHD1 encodes a novel chloroplast-localized UDP-glucose epimerase (UGE), which is conserved in the plant kingdom. The chloroplast localization of PHD1 was confirmed by immunoblots, immunocytochemistry, and UGE activity in isolated chloroplasts, which was approximately 50% lower in the phd1-1 mutant than in the wild type. In addition, the amounts of UDP-glucose and UDP-galactose substrates in chloroplasts were significantly higher and lower, respectively, indicating that PHD1 was responsible for a major part of UGE activity in plastids. The relative amount of monogalactosyldiacylglycerol (MGDG), a major chloroplast membrane galactolipid, was decreased in the mutant, while the digalactosyldiacylglycerol (DGDG) amount was not significantly altered, suggesting that PHD1 participates mainly in UDP-galactose supply for MGDG biosynthesis in chloroplasts. The phd1 mutant showed decreased chlorophyll content, photosynthetic activity, and altered chloroplast ultrastructure, suggesting that a correct amount of galactoglycerolipids and the ratio of glycolipids versus phospholipids are necessary for proper chloroplast function. Downregulated expression of starch biosynthesis genes and upregulated expression of sucrose cleavage genes might be a result of reduced photosynthetic activity and account for the decreased starch and sucrose levels seen in phd1 leaves. PHD1 overexpression increased photosynthetic efficiency, biomass, and grain production, suggesting that PHD1 plays an important role in supplying sufficient galactolipids to thylakoid membranes for proper chloroplast biogenesis and photosynthetic activity. These findings will be useful for improving crop yields and for bioenergy crop engineering

    A prospective evaluation of the safety and efficacy of the TAXUS Element paclitaxel-eluting coronary stent system for the treatment of de novo coronary artery lesions: Design and statistical methods of the PERSEUS clinical program

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Paclitaxel-eluting stents decrease angiographic and clinical restenosis following percutaneous coronary intervention compared to bare metal stents. TAXUS Element is a third-generation paclitaxel-eluting stent which incorporates a novel, thinner-strut, platinum-enriched metal alloy platform. The stent is intended to have enhanced radiopacity and improved deliverability compared to other paclitaxel-eluting stents. The safety and efficacy of the TAXUS Element stent are being evaluated in the pivotal PERSEUS clinical trials.</p> <p>Methods/Design</p> <p>The PERSEUS trials include two parallel studies of the TAXUS Element stent in single, de novo coronary atherosclerotic lesions. The PERSEUS Workhorse study is a prospective, randomized (3:1), single-blind, non-inferiority trial in subjects with lesion length ≤28 mm and vessel diameter ≥2.75 mm to ≤4.0 mm which compares TAXUS Element to the TAXUS Express<sup>2 </sup>paclitaxel-eluting stent system. The Workhorse study employs a novel Bayesian statistical approach that uses prior information to limit the number of study subjects exposed to the investigational device and thus provide a safer and more efficient analysis of the TAXUS Element stent. PERSEUS Small Vessel is a prospective, single-arm, superiority trial in subjects with lesion length ≤20 mm and vessel diameter ≥2.25 mm to <2.75 mm that compares TAXUS Element with a matched historical bare metal Express stent control.</p> <p>Discussion</p> <p>The TAXUS PERSEUS clinical trial program uses a novel statistical approach to evaluate whether design and metal alloy iterations in the TAXUS Element stent platform provide comparable safety and improved procedural performance compared to the previous generation Express stent. PERSEUS trial enrollment is complete and primary endpoint data are expected in 2010. PERSEUS Workhorse and Small Vessel are registered at <url>http://www.clinicaltrials.gov</url>, identification numbers NCT00484315 and NCT00489541.</p

    Minimal Mesoscale Model for Protein-Mediated Vesiculation in Clathrin-Dependent Endocytosis

    Get PDF
    In eukaryotic cells, the internalization of extracellular cargo via the endocytic machinery is an important regulatory process required for many essential cellular functions. The role of cooperative protein-protein and protein-membrane interactions in the ubiquitous endocytic pathway in mammalian cells, namely the clathrin-dependent endocytosis, remains unresolved. We employ the Helfrich membrane Hamiltonian together with surface evolution methodology to address how the shapes and energetics of vesicular-bud formation in a planar membrane are stabilized by presence of the clathrin-coat assembly. Our results identify a unique dual role for the tubulating protein epsin: multiple epsins localized spatially and orientationally collectively play the role of a curvature inducing capsid; in addition, epsin serves the role of an adapter in binding the clathrin coat to the membrane. Our results also suggest an important role for the clathrin lattice, namely in the spatial- and orientational-templating of epsins. We suggest that there exists a critical size of the coat above which a vesicular bud with a constricted neck resembling a mature vesicle is stabilized. Based on the observed strong dependence of the vesicle diameter on the bending rigidity, we suggest that the variability in bending stiffness due to variations in membrane composition with cell type can explain the experimentally observed variability on the size of clathrin-coated vesicles, which typically range 50–100 nm. Our model also provides estimates for the number of epsins involved in stabilizing a coated vesicle, and without any direct fitting reproduces the experimentally observed shapes of vesicular intermediates as well as their probability distributions quantitatively, in wildtype as well as CLAP IgG injected neuronal cell experiments. We have presented a minimal mesoscale model which quantitatively explains several experimental observations on the process of vesicle nucleation induced by the clathrin-coated assembly prior to vesicle scission in clathrin dependent endocytosis

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
    corecore