653 research outputs found

    Complex THz and DC inverse spin Hall effect in YIG/Cu1−x_{1-x}Irx_{x} bilayers across a wide concentration range

    Get PDF
    We measure the inverse spin Hall effect of Cu1−x_{1-x}Irx_{x} thin films on yttrium iron garnet over a wide range of Ir concentrations (0.05⩽x⩽0.70.05 \leqslant x \leqslant 0.7). Spin currents are triggered through the spin Seebeck effect, either by a DC temperature gradient or by ultrafast optical heating of the metal layer. The spin Hall current is detected by, respectively, electrical contacts or measurement of the emitted THz radiation. With both approaches, we reveal the same Ir concentration dependence that follows a novel complex, non-monotonous behavior as compared to previous studies. For small Ir concentrations a signal minimum is observed, while a pronounced maximum appears near the equiatomic composition. We identify this behavior as originating from the interplay of different spin Hall mechanisms as well as a concentration-dependent variation of the integrated spin current density in Cu1−x_{1-x}Irx_{x}. The coinciding results obtained for DC and ultrafast stimuli show that the studied material allows for efficient spin-to-charge conversion even on ultrafast timescales, thus enabling a transfer of established spintronic measurement schemes into the terahertz regime.Comment: 12 pages, 4 figure

    Terahertz electrical writing speed in an antiferromagnetic memory

    Get PDF
    The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet. A current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the 12-order-of-magnitude range of writing speeds from hertz to terahertz. Our work opens the path toward the development of memory-logic technology reaching the elusive terahertz band

    Spintronic Sources of Ultrashort Terahertz Electromagnetic Pulses

    Get PDF
    Spintronic terahertz emitters are novel, broadband and efficient sources of terahertz radiation, which emerged at the intersection of ultrafast spintronics and terahertz photonics. They are based on efficient spin-current generation, spin-to-charge-current and current-to-field conversion at terahertz rates. In this review, we address the recent developments and applications, the current understanding of the physical processes as well as the future challenges and perspectives of broadband spintronic terahertz emitters

    Biodiversity and ecosystem functions across an afro-tropical forest biodiversity hotspot

    Get PDF
    Ecosystem functions are important for the resilience of ecosystems and for human livelihood quality. Intact habitats and heterogeneous environments are known to provide a large variety of ecosystem functions. Natural and near natural ecosystems surrounding agroecosystems may positively support crop growing conditions and thus facilitate crop yields. In contrast, monocultures of crops and trees as well as degraded landscapes are known to provide less ecosystem functions. The Taita Hills in southern Kenya are part of the Eastern Afromontane biodiversity hotspot, and represent a habitat mosaic consisting of largely intact cloud forests, agroecosystems and plantations of exotic trees. In this region, subsistence farmers rely on ecosystem functions provided by natural ecosystems. In this study, we analyze three proxies of biodiversity and ecosystem functions, namely pollination activity, predation rates, and arthropod diversity in tree canopies. We set study plots along forest-agroecosystem-gradients, covering cloud forest, forest edge and agricultural fields, as well as plantations of exotic trees. We assessed environmental conditions, to evaluate the extent to which local environmental factors influence ecosystem functions. Based on these data we investigate potential spill over of ecosystem functions from forest into adjoining agroecosystems. For predation rates we found trends of spill over effects from forest interior into the agroecosystem. The expression of ecosystem functions differed among habitat types, with comparatively high predation rates in the forest, high pollinator activity in the open agricultural areas, and highest arthropod diversity along the forest edge. Eucalyptus plantations showed reduced ecosystem functions and lowest arthropod diversity. Local factors such as vegetation cover and flower supply positively influence pollinator activity. Our study show that natural ecosystems may positively contribute ecosystem functions such as predation, while the homogenization of biota through planting of invasive exotic tree species significantly reduce biodiversity and ecosystem functions. Transition habitats such as forest margins, and small-scale ecological enhancement positively influences biodiversity and ecosystem functions.Publikationsfonds ML

    Older adults’ engagement in senior university lectures and the effect of individual motivations

    Get PDF
    Among older adults, engagement in education can potentially have positive effects on cognition and psychological well-being and can prevent social isolation. The aim of this study is to investigate the role of individual motivations specific to older learners that underlie the frequency of participation at a senior university and how health or socioeconomic dimensions may affect the possibilities for participation. With data on participants from the senior university program at the University of Zurich (N, 811), we show that greater individual motivations regarding different aspects of learning have an effect on the frequency of lecture attendance, while other life circumstances do not. However, the findings show that when different forms of motivation are compared, instrumental motivation - meaning that the intention to use the gained knowledge now or in the future is responsible for the participant’s learning aspirations - is the only motivation that significantly increases lecture attendance. Hence, we conclude that to increase people’s engagement in this specific form of education in later life and to intensify lecture attendance, these programs should meet participants expectations.peer-reviewe

    Prediction of hybrid performance in maize with a ridge regression model employed to DNA markers and mRNA transcription profiles

    Get PDF
    Background: Ridge regression models can be used for predicting heterosis and hybrid performance. Their application to mRNA transcription profiles has not yet been investigated. Our objective was to compare the prediction accuracy of models employing mRNA transcription profiles with that of models employing genome-wide markers using a data set of 98 maize hybrids from a breeding program. Results: We predicted hybrid performance and mid-parent heterosis for grain yield and grain dry matter content and employed cross validation to assess the prediction accuracy. Prediction with a ridge regression model using random effects for mRNA transcription profiles resulted in similar prediction accuracies than employing the model to DNA markers. For hybrids, of which none of the parental inbred lines was part of the training set, the ridge regression model did not reach the prediction accuracy that was obtained with a model using transcriptome-based distances. Conclusion: We conclude that mRNA transcription profiles are a promising alternative to DNA markers for hybrid prediction, but further studies with larger data sets are required to investigate the superiority of alternative prediction models

    Time-domain observation of ballistic orbital-angular-momentum currents with giant relaxation length in tungsten

    Full text link
    The emerging field of orbitronics exploits the electron orbital momentum L\textit{L}. Compared to spin-polarized electrons, L\textit{L} may allow magnetic-information transfera with significantly higher density over longer distances in more materials. However, direct experimental observation of L\textit{L} currents, their extended propagation lengths and their conversion into charge currents has remained challenging. Here, we optically trigger ultrafast angular-momentum transport in Ni|W|SiO2_2 thin-film stacks. The resulting terahertz charge-current bursts exhibit a marked delay and width that grow linearly with W thickness. We consistently ascribe these observations to a ballistic L\textit{L} current from Ni through W with giant decay length (~80 nm) and low velocity (~0.1 nm/fs). At the W/SiO2_2 interface, the L\textit{L} flow is efficiently converted into a charge current by the inverse orbital Rashba-Edelstein effect, consistent with ab-initio calculations. Our findings establish orbitronic materials with long-distance ballistic L\textit{L} transport as possible candidates for future ultrafast devices and an approach to discriminate Hall- and Rashba-Edelstein-like conversion processes

    Time-domain observation of ballistic orbital-angular-momentum currents with giant relaxation length in tungsten

    Get PDF
    The emerging field of orbitronics exploits the electron orbital momentum L. Compared to spin-polarized electrons, L may allow the transfer of magnetic information with considerably higher density over longer distances in more materials. However, direct experimental observation of L currents, their extended propagation lengths and their conversion into charge currents has remained challenging. Here, we optically trigger ultrafast angular-momentum transport in Ni|W|SiO2 thin-film stacks. The resulting terahertz charge-current bursts exhibit a marked delay and width that grow linearly with the W thickness. We consistently ascribe these observations to a ballistic L current from Ni through W with a giant decay length (~80 nm) and low velocity (~0.1 nm fs−1). At the W/SiO2 interface, the L flow is efficiently converted into a charge current by the inverse orbital Rashba–Edelstein effect, consistent with ab initio calculations. Our findings establish orbitronic materials with long-distance ballistic L transport as possible candidates for future ultrafast devices and an approach to discriminate Hall-like and Rashba–Edelstein-like conversion processes

    Radiation hardness of ultrabroadband spintronic terahertz emitters: en-route to a space-qualified terahertz time-domain gas spectrometer

    Full text link
    The radiation hardness of ultrabroadband, spintronic terahertz emitters against gamma and proton irradiation is investigated. We find that irradiation doses equivalent to those experienced by a space instrument en-route to and operated on Mars have a minor effect on the performance of the emitter. In particular, the ultrawide emission spectrum 0.1-30 THz, which covers a large part of the vibrational fingerprint region, remains unchanged. These results make this emitter type highly interesting as essential building block for broad-band gas sensors based on terahertz time-domain spectroscopy for future space missions
    • …
    corecore