38 research outputs found

    Bulk Damage Effects in Irradiated Silicon Detectors due to Clustered Divacancies

    Get PDF
    High resistivity silicon particle detectors will be used extensively in experiments at the future CERN Large Hadron Collider where the enormous particle fluences give rise to significant atomic displacement damage. A model has been developed to estimate the evolution of defect concentrations during irradiation and their electrical behaviour according to Shockley-Read-Hall (SRH) semiconductor statistics. The observed increases in leakage current and doping concentration changes can be described well after gamma irradiation but less well after fast neutron irradiation. A possible non-SRH mechanism is considered, based on the hypothesis of charge transfer between clustered divacancy defects in neutron damaged silicon detectors. This leads to a large enhancement over the SRH prediction for V2 acceptor state occupancy and carrier generation rate which may resolve the discrepancy

    Is political rivalry an incentive to vote?

    No full text

    Can Acute Dermal Systemic Toxicity Tests Be Replaced With Oral Tests? A Comparison of Route-Specific Systemic Toxicity and Hazard Classifications Under the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

    Get PDF
    Acute systemic toxicity data (LD50 values) and hazard classifications derived in the rat following oral administration and dermal application have been analysed to examine whether or not orally-derived hazard classification or LD50 values can be used to determine dermal hazard classification. Comparing the oral and dermal classifications for 335 substances derived from oral and dermal LD50 values respectively revealed 17% concordance, and indicated that 7% of substances would be classified less severely while 76% would be classified more severely if oral classifications were applied directly to the dermal route. In contrast, applying the oral LD50 values within the dermal classification criteria to determine the dermal classification reduced the concordance to 15% and the relative ‘under-classification’ to 1%, but increased the relative ‘over-classification’ to 84%. Both under- and over-classification are undesirable, and mitigation strategies are discussed. Finally, no substance with an oral LD50 of \u3e2000 mg/kg was classified for acute systemic toxicity by the dermal route, suggesting that dermal testing for acute systemic toxicity of such substances adds nothing to the hazard characterisation and should be removed from routine regulatory data requirements

    Can Acute Dermal Systemic Toxicity Tests Be Replaced With Oral Tests? A Comparison of Route-Specific Systemic Toxicity and Hazard Classifications Under the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

    No full text
    Acute systemic toxicity data (LD50 values) and hazard classifications derived in the rat following oral administration and dermal application have been analysed to examine whether or not orally-derived hazard classification or LD50 values can be used to determine dermal hazard classification. Comparing the oral and dermal classifications for 335 substances derived from oral and dermal LD50 values respectively revealed 17% concordance, and indicated that 7% of substances would be classified less severely while 76% would be classified more severely if oral classifications were applied directly to the dermal route. In contrast, applying the oral LD50 values within the dermal classification criteria to determine the dermal classification reduced the concordance to 15% and the relative ‘under-classification’ to 1%, but increased the relative ‘over-classification’ to 84%. Both under- and over-classification are undesirable, and mitigation strategies are discussed. Finally, no substance with an oral LD50 of \u3e2000 mg/kg was classified for acute systemic toxicity by the dermal route, suggesting that dermal testing for acute systemic toxicity of such substances adds nothing to the hazard characterisation and should be removed from routine regulatory data requirements

    Workshop on the validation and regulatory acceptance of innovative 3R approaches in regulatory toxicology - Evolution versus revolution.

    No full text
    At a joint workshop organized by RIVM and BfR, international experts from governmental institutes, regulatory agencies, industry, academia and animal welfare organizations discussed and provided recommendations for the development, validation and implementation of innovative 3R approaches in regulatory toxicology. In particular, an evolutionary improvement of our current approach of test method validation in the context of defined approaches or integrated testing strategies was discussed together with a revolutionary approach based on a comprehensive description of the physiological responses of the human body to chemical exposure and the subsequent definition of relevant and predictive in vitro, in chemico or in silico methods. A more comprehensive evaluation of biological relevance, scientific validity and regulatory purpose of new test methods and assessment strategies together with case studies that provide practical experience with new approaches were discussed as essential steps to build up the necessary confidence to facilitate regulatory acceptance
    corecore