13,849 research outputs found

    Suspending Lefschetz fibrations, with an application to Local Mirror Symmetry

    Get PDF
    We consider the suspension operation on Lefschetz fibrations, which takes p(x) to p(x)-y^2. This leaves the Fukaya category of the fibration invariant, and changes the category of the fibre (or more precisely, the subcategory consisting of a basis of vanishing cycles) in a specific way. As an application, we prove part of Homological Mirror Symmetry for the total spaces of canonical bundles over toric del Pezzo surfaces.Comment: v2: slightly expanded expositio

    THz-range free-electron laser ESR spectroscopy: techniques and applications in high magnetic fields

    Full text link
    The successful use of picosecond-pulse free-electron-laser (FEL) radiation for the continuous-wave THz-range electron spin resonance (ESR) spectroscopy has been demonstrated. The combination of two linac-based FELs (covering the wavelength range of 4 - 250 μ\mum) with pulsed magnetic fields up to 70 T allows for multi-frequency ESR spectroscopy in a frequency range of 1.2 - 75 THz with a spectral resolution better than 1%. The performance of the spectrometer is illustrated with ESR spectra obtained in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the low-dimensional organic material (C6_6H9_9N2_2)CuCl3_3.Comment: 9 pages, 9 figures. Rev. Sci. Instrum., accepte

    Ground Instrumentation for Mariner IV OCCULTATION Experiment

    Get PDF
    Deep Space Instrumentation Facility /DSIF/ GROUND receiver stations for Mariner IV space probe occulation experimen

    Convex Hull of Planar H-Polyhedra

    Get PDF
    Suppose are planar (convex) H-polyhedra, that is, $A_i \in \mathbb{R}^{n_i \times 2}$ and $\vec{c}_i \in \mathbb{R}^{n_i}$. Let $P_i = \{\vec{x} \in \mathbb{R}^2 \mid A_i\vec{x} \leq \vec{c}_i \}$ and $n = n_1 + n_2$. We present an $O(n \log n)$ algorithm for calculating an H-polyhedron with the smallest P={x⃗∈R2∣Ax⃗≤c⃗}P = \{\vec{x} \in \mathbb{R}^2 \mid A\vec{x} \leq \vec{c} \} such that P1∪P2⊆PP_1 \cup P_2 \subseteq P

    Exploring the dynamic interplay of cognitive load and emotional arousal by using multimodal measurements: Correlation of pupil diameter and emotional arousal in emotionally engaging tasks

    Full text link
    Multimodal data analysis and validation based on streams from state-of-the-art sensor technology such as eye-tracking or emotion recognition using the Facial Action Coding System (FACTs) with deep learning allows educational researchers to study multifaceted learning and problem-solving processes and to improve educational experiences. This study aims to investigate the correlation between two continuous sensor streams, pupil diameter as an indicator of cognitive workload and FACTs with deep learning as an indicator of emotional arousal (RQ 1a), specifically for epochs of high, medium, and low arousal (RQ 1b). Furthermore, the time lag between emotional arousal and pupil diameter data will be analyzed (RQ 2). 28 participants worked on three cognitively demanding and emotionally engaging everyday moral dilemmas while eye-tracking and emotion recognition data were collected. The data were pre-processed in Phyton (synchronization, blink control, downsampling) and analyzed using correlation analysis and Granger causality tests. The results show negative and statistically significant correlations between the data streams for emotional arousal and pupil diameter. However, the correlation is negative and significant only for epochs of high arousal, while positive but non-significant relationships were found for epochs of medium or low arousal. The average time lag for the relationship between arousal and pupil diameter was 2.8 ms. In contrast to previous findings without a multimodal approach suggesting a positive correlation between the constructs, the results contribute to the state of research by highlighting the importance of multimodal data validation and research on convergent vagility. Future research should consider emotional regulation strategies and emotional valence.Comment: The first two authors contributed equally to the manuscrip

    The Evolution of Distorted Rotating Black Holes II: Dynamics and Analysis

    Full text link
    We have developed a numerical code to study the evolution of distorted, rotating black holes. This code is used to evolve a new family of black hole initial data sets corresponding to distorted ``Kerr'' holes with a wide range of rotation parameters, and distorted Schwarzschild black holes with odd-parity radiation. Rotating black holes with rotation parameters as high as a/m=0.87a/m=0.87 are evolved and analyzed in this paper. The evolutions are generally carried out to about t=100Mt=100M, where MM is the ADM mass. We have extracted both the even- and odd-parity gravitational waveforms, and find the quasinormal modes of the holes to be excited in all cases. We also track the apparent horizons of the black holes, and find them to be a useful tool for interpreting the numerical results. We are able to compute the masses of the black holes from the measurements of their apparent horizons, as well as the total energy radiated and find their sum to be in excellent agreement with the ADM mass.Comment: 26 pages, LaTeX with RevTeX 3.0 macros. 27 uuencoded gz-compressed postscript figures. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ Submitted to Physical Review

    Beam Dynamics in High Intensity Cyclotrons Including Neighboring Bunch Effects: Model, Implementation and Application

    Full text link
    Space charge effects, being one of the most significant collective effects, play an important role in high intensity cyclotrons. However, for cyclotrons with small turn separation, other existing effects are of equal importance. Interactions of radially neighboring bunches are also present, but their combined effects has not yet been investigated in any great detail. In this paper, a new particle in cell based self-consistent numerical simulation model is presented for the first time. The model covers neighboring bunch effects and is implemented in the three-dimensional object-oriented parallel code OPAL-cycl, a flavor of the OPAL framework. We discuss this model together with its implementation and validation. Simulation results are presented from the PSI 590 MeV Ring Cyclotron in the context of the ongoing high intensity upgrade program, which aims to provide a beam power of 1.8 MW (CW) at the target destination
    • …
    corecore