14,945 research outputs found

    Performance improvement of DSS-13 34-meter beam-waveguide antenna using the JPL microwave holography methodology

    Get PDF
    Described here is the application of the microwave holography technique to Deep Space Station (DSS) 13. The project goal of obtaining a rigging angle surface rms error of 0.43 mm or better was met. The Jet Propulsion Laboratory-developed holography algorithms enabled a reduction of the surface error of the DSS-13 antenna from the optically set 0.83 mm axial rms error down to 0.40 mm rms, providing an additional 4.1 dB of performance at 32 GHz

    Exact Lagrangian submanifolds in simply-connected cotangent bundles

    Full text link
    We consider exact Lagrangian submanifolds in cotangent bundles. Under certain additional restrictions (triviality of the fundamental group of the cotangent bundle, and of the Maslov class and second Stiefel-Whitney class of the Lagrangian submanifold) we prove such submanifolds are Floer-cohomologically indistinguishable from the zero-section. This implies strong restrictions on their topology. An essentially equivalent result was recently proved independently by Nadler, using a different approach.Comment: 28 pages, 3 figures. Version 2 -- derivation and discussion of the spectral sequence considerably expanded. Other minor change

    Data compression and regression based on local principal curves.

    Get PDF
    Frequently the predictor space of a multivariate regression problem of the type y = m(x_1, …, x_p ) + ε is intrinsically one-dimensional, or at least of far lower dimension than p. Usual modeling attempts such as the additive model y = m_1(x_1) + … + m_p (x_p ) + ε, which try to reduce the complexity of the regression problem by making additional structural assumptions, are then inefficient as they ignore the inherent structure of the predictor space and involve complicated model and variable selection stages. In a fundamentally different approach, one may consider first approximating the predictor space by a (usually nonlinear) curve passing through it, and then regressing the response only against the one-dimensional projections onto this curve. This entails the reduction from a p- to a one-dimensional regression problem. As a tool for the compression of the predictor space we apply local principal curves. Taking things on from the results presented in Einbeck et al. (Classification – The Ubiquitous Challenge. Springer, Heidelberg, 2005, pp. 256–263), we show how local principal curves can be parametrized and how the projections are obtained. The regression step can then be carried out using any nonparametric smoother. We illustrate the technique using data from the physical sciences

    Supersonic Technology Concept Aeroplanes for Environmental Studies

    Get PDF
    The International Civil Aviation Organization is considering new environmental standards for future supersonic civil aircraft. NASA is supporting this effort by analyzing several notional, near-term supersonic transports. NASAs performance, noise, and exhaust emission predictions for these transports are being used to inform a larger study that will determine the global environmental and economic impact of adding supersonic aircraft to the fleet beginning this decade. A supersonic business jet with a maximum takeoff gross weight of 55 tonnes is the focus of this paper. A smaller business jet weighing 45 tonnes is also discussed. Both airplanes use supersonic engines derived from a common contemporary commercial subsonic turbofan core. Aircraft performance, airport-vicinity noise, and exhaust emissions are predicted using NASA tools. Also investigated are some of the anticipated behaviors and requirements of these aircraft in the commercial airspace. The sensitivity of noise to system uncertainties is presented and alternative engine studies are discussed

    The Evolution of Distorted Rotating Black Holes II: Dynamics and Analysis

    Full text link
    We have developed a numerical code to study the evolution of distorted, rotating black holes. This code is used to evolve a new family of black hole initial data sets corresponding to distorted ``Kerr'' holes with a wide range of rotation parameters, and distorted Schwarzschild black holes with odd-parity radiation. Rotating black holes with rotation parameters as high as a/m=0.87a/m=0.87 are evolved and analyzed in this paper. The evolutions are generally carried out to about t=100Mt=100M, where MM is the ADM mass. We have extracted both the even- and odd-parity gravitational waveforms, and find the quasinormal modes of the holes to be excited in all cases. We also track the apparent horizons of the black holes, and find them to be a useful tool for interpreting the numerical results. We are able to compute the masses of the black holes from the measurements of their apparent horizons, as well as the total energy radiated and find their sum to be in excellent agreement with the ADM mass.Comment: 26 pages, LaTeX with RevTeX 3.0 macros. 27 uuencoded gz-compressed postscript figures. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ Submitted to Physical Review

    Evolution of 3D Boson Stars with Waveform Extraction

    Full text link
    Numerical results from a study of boson stars under nonspherical perturbations using a fully general relativistic 3D code are presented together with the analysis of emitted gravitational radiation. We have constructed a simulation code suitable for the study of scalar fields in space-times of general symmetry by bringing together components for addressing the initial value problem, the full evolution system and the detection and analysis of gravitational waves. Within a series of numerical simulations, we explicitly extract the Zerilli and Newman-Penrose scalar Ψ4\Psi_4 gravitational waveforms when the stars are subjected to different types of perturbations. Boson star systems have rapidly decaying nonradial quasinormal modes and thus the complete gravitational waveform could be extracted for all configurations studied. The gravitational waves emitted from stable, critical, and unstable boson star configurations are analyzed and the numerically observed quasinormal mode frequencies are compared with known linear perturbation results. The superposition of the high frequency nonspherical modes on the lower frequency spherical modes was observed in the metric oscillations when perturbations with radial and nonradial components were applied. The collapse of unstable boson stars to black holes was simulated. The apparent horizons were observed to be slightly nonspherical when initially detected and became spherical as the system evolved. The application of nonradial perturbations proportional to spherical harmonics is observed not to affect the collapse time. An unstable star subjected to a large perturbation was observed to migrate to a stable configuration.Comment: 26 pages, 12 figure

    Strain-induced magnetic phase transition in SrCoO3−δ_{3-\delta} thin films

    Get PDF
    It has been well established that both in bulk at ambient pressure and for films under modest strains, cubic SrCoO3−δ_{3-\delta} (δ<0.2\delta < 0.2) is a ferromagnetic metal. Recent theoretical work, however, indicates that a magnetic phase transition to an antiferromagnetic structure could occur under large strain accompanied by a metal-insulator transition. We have observed a strain-induced ferromagnetic to antiferromagnetic phase transition in SrCoO3−δ_{3-\delta} films grown on DyScO3_3 substrates, which provide a large tensile epitaxial strain, as compared to ferromagnetic films under lower tensile strain on SrTiO3_3 substrates. Magnetometry results demonstrate the existence of antiferromagnetic spin correlations and neutron diffraction experiments provide a direct evidence for a G-type antiferromagnetic structure with Ne\'el temperatures between TN∼135 ± 10 KT_N \sim 135\,\pm\,10\,K and ∼325 ± 10 K\sim 325\,\pm\,10\,K depending on the oxygen content of the samples. Therefore, our data experimentally confirm the predicted strain-induced magnetic phase transition to an antiferromagnetic state for SrCoO3−δ_{3-\delta} thin films under large epitaxial strain.Comment: 6 pages, 4 figure

    Ramanujan and Extensions and Contractions of Continued Fractions

    Full text link
    If a continued fraction Kn=1∞an/bnK_{n=1}^{\infty} a_{n}/b_{n} is known to converge but its limit is not easy to determine, it may be easier to use an extension of Kn=1∞an/bnK_{n=1}^{\infty}a_{n}/b_{n} to find the limit. By an extension of Kn=1∞an/bnK_{n=1}^{\infty} a_{n}/b_{n} we mean a continued fraction Kn=1∞cn/dnK_{n=1}^{\infty} c_{n}/d_{n} whose odd or even part is Kn=1∞an/bnK_{n=1}^{\infty} a_{n}/b_{n}. One can then possibly find the limit in one of three ways: (i) Prove the extension converges and find its limit; (ii) Prove the extension converges and find the limit of the other contraction (for example, the odd part, if Kn=1∞an/bnK_{n=1}^{\infty}a_{n}/b_{n} is the even part); (ii) Find the limit of the other contraction and show that the odd and even parts of the extension tend to the same limit. We apply these ideas to derive new proofs of certain continued fraction identities of Ramanujan and to prove a generalization of an identity involving the Rogers-Ramanujan continued fraction, which was conjectured by Blecksmith and Brillhart.Comment: 16 page

    The dynamical stability of the static real scalar field solutions to the Einstein-Klein-Gordon equations revisited

    Get PDF
    We re-examine the dynamical stability of the nakedly singular, static, spherical ly symmetric solutions of the Einstein-Klein Gordon system. We correct an earlier proof of the instability of these solutions, and demonstrate that there are solutions to the massive Klein-Gordon system that are perturbatively stable.Comment: 13 pages, uses Elsevier style files. To appear in Phys. Lett.
    • …
    corecore