research

Strain-induced magnetic phase transition in SrCoO3δ_{3-\delta} thin films

Abstract

It has been well established that both in bulk at ambient pressure and for films under modest strains, cubic SrCoO3δ_{3-\delta} (δ<0.2\delta < 0.2) is a ferromagnetic metal. Recent theoretical work, however, indicates that a magnetic phase transition to an antiferromagnetic structure could occur under large strain accompanied by a metal-insulator transition. We have observed a strain-induced ferromagnetic to antiferromagnetic phase transition in SrCoO3δ_{3-\delta} films grown on DyScO3_3 substrates, which provide a large tensile epitaxial strain, as compared to ferromagnetic films under lower tensile strain on SrTiO3_3 substrates. Magnetometry results demonstrate the existence of antiferromagnetic spin correlations and neutron diffraction experiments provide a direct evidence for a G-type antiferromagnetic structure with Ne\'el temperatures between TN135±10KT_N \sim 135\,\pm\,10\,K and 325±10K\sim 325\,\pm\,10\,K depending on the oxygen content of the samples. Therefore, our data experimentally confirm the predicted strain-induced magnetic phase transition to an antiferromagnetic state for SrCoO3δ_{3-\delta} thin films under large epitaxial strain.Comment: 6 pages, 4 figure

    Similar works