746 research outputs found

    Advanced Strain-Isolation-Pad Material with Bonded Fibrous Construction

    Get PDF
    The feasibility of utilizing air lay and liquid lay felt deposition techniques to fabricate strain isolation pad (SIP) materials for the Space Shuttle Orbiter was demonstrated. These materials were developed as candidate replacements for the present needled felt SIP used between the ceramic tiles and the aluminum skin on the undersurface of the Orbiter. The SIP materials that were developed consisted of high temperature aramid fibers deposited by controlled fluid (air or liquid) carriers to form low density unbonded felts. The deposited felts were then bonded at the fiber intersections with a small amount of high temperature polyimide resin. This type of bonded felt construction can potentially eliminate two of the problems associated with the present SIP, viz., transmittal of localized stresses into the tiles and load history dependent mechanical response. However, further work is needed to achieve adequate through thickness tensile strength in the bonded felts

    Application of In Situ Fiberization for fabrication of improved strain isolation pads and graphite epoxy composites

    Get PDF
    The feasibility of applying the in situ fiberization process to the fabrication of strain isolation pads (SIP) for the Space Shuttle and to the fabrication of graphite-epoxy composites was evaluated. The ISF process involves the formation of interconnected polymer fiber networks by agitation of dilute polymer solutions under controlled conditions. High temperature polymers suitable for SIP use were fiberized and a successful fiberization of polychloro trifluoroethylene, a relatively high melting polymer, was achieved. Attempts to fiberize polymers with greater thermal stability were unsuccessful, apparently due to characteristics caused by the presence of aromaticity in the backbone of such materials. Graphite-epoxy composites were fabricated by interconnecting two dimensional arrays of graphite fiber with polypropylene IS fibers with subsequent epoxy resin impregnation. Mechanical property tests were performed on laminated panels of this material to evaluate intralaminar and interlaminar shear strength, and thus fracture toughness. Test results were generally unpromising

    Asymptotic Derivation and Numerical Investigation of Time-Dependent Simplified Pn Equations

    Full text link
    The steady-state simplified Pn (SPn) approximations to the linear Boltzmann equation have been proven to be asymptotically higher-order corrections to the diffusion equation in certain physical systems. In this paper, we present an asymptotic analysis for the time-dependent simplified Pn equations up to n = 3. Additionally, SPn equations of arbitrary order are derived in an ad hoc way. The resulting SPn equations are hyperbolic and differ from those investigated in a previous work by some of the authors. In two space dimensions, numerical calculations for the Pn and SPn equations are performed. We simulate neutron distributions of a moving rod and present results for a benchmark problem, known as the checkerboard problem. The SPn equations are demonstrated to yield significantly more accurate results than diffusion approximations. In addition, for sufficiently low values of n, they are shown to be more efficient than Pn models of comparable cost.Comment: 32 pages, 7 figure

    Time-dependent Gutzwiller theory of magnetic excitations in the Hubbard model

    Full text link
    We use a spin-rotational invariant Gutzwiller energy functional to compute random-phase-approximation-like (RPA) fluctuations on top of the Gutzwiller approximation (GA). The method can be viewed as an extension of the previously developed GA+RPA approach for the charge sector [G. Seibold and J. Lorenzana, Phys. Rev. Lett. {\bf 86}, 2605 (2001)] with respect to the inclusion of the magnetic excitations. Unlike the charge case, no assumptions about the time evolution of the double occupancy are needed in this case. Interestingly, in a spin-rotational invariant system, we find the correct degeneracy between triplet excitations, showing the consistency of both computations. Since no restrictions are imposed on the symmetry of the underlying saddle-point solution, our approach is suitable for the evaluation of the magnetic susceptibility and dynamical structure factor in strongly correlated inhomogeneous systems. We present a detailed study of the quality of our approach by comparing with exact diagonalization results and show its much higher accuracy compared to the conventional Hartree-Fock+RPA theory. In infinite dimensions, where the GA becomes exact for the Gutzwiller variational energy, we evaluate ferromagnetic and antiferromagnetic instabilities from the transverse magnetic susceptibility. The resulting phase diagram is in complete agreement with previous variational computations.Comment: 12 pages, 8 figure

    Inhomogeneous Gutzwiller approximation with random phase fluctuations for the Hubbard model

    Full text link
    We present a detailed study of the time-dependent Gutzwiller approximation for the Hubbard model. The formalism, labelled GA+RPA, allows us to compute random-phase approximation-like (RPA) fluctuations on top of the Gutzwiller approximation (GA). No restrictions are imposed on the charge and spin configurations which makes the method suitable for the calculation of linear excitations around symmetry-broken solutions. Well-behaved sum rules are obeyed as in the Hartree-Fock (HF) plus RPA approach. Analytical results for a two-site model and numerical results for charge-charge and current-current dynamical correlation functions in one and two dimensions are compared with exact and HF+RPA results, supporting the much better performance of GA+RPA with respect to conventional HF+RPA theory.Comment: 14 pages, 6 figure

    Time-dependent Gutzwiller approximation for the Hubbard model

    Full text link
    We develop a time-dependent Gutzwiller approximation (GA) for the Hubbard model analogous to the time-dependent Hartree-Fock (HF) method. The formalism incorporates ground state correlations of the random phase approximation (RPA) type beyond the GA. Static quantities like ground state energy and double occupancy are in excellent agreement with exact results in one dimension up to moderate coupling and in two dimensions for all couplings. We find a substantial improvement over traditional GA and HF+RPA treatments. Dynamical correlation functions can be easily computed and are also substantially better than HF+RPA ones and obey well behaved sum rules.Comment: 4 pages, 2 figure

    Dynamical charge and spin density wave scattering in cuprate superconductor

    Full text link
    We show that a variety of spectral features in high-T_c cuprates can be understood from the coupling of charge carriers to some kind of dynamical order which we exemplify in terms of fluctuating charge and spin density waves. Two theoretical models are investigated which capture different aspects of such dynamical scattering. The first approach leaves the ground state in the disordered phase but couples the electrons to bosonic degrees of freedom, corresponding to the quasi singular scattering associated with the closeness to an ordered phase. The second, more phenomological approach starts from the construction of a frequency dependent order parameter which vanishes for small energies. Both theories capture scanning tunneling microscopy and angle-resoved photoemission experiments which suggest the protection of quasiparticles close to the Fermi energy but the manifestation of long-range order at higher frequencies.Comment: 27 pages, 13 figures, to appear in New J. Phy

    Safety of Spaceflight Participants Aboard Suborbital Reusable Launch Vehicles

    Get PDF
    The anticipated advent of the U.S. Government sponsoring human-tended research on commercial suborbital flights necessitates the establishment of safety review procedures for federal agencies to allow government-sponsored spaceflight participants (SFPs) aboard these vehicles. Safety practices for National Aeronautics & Space Administration (NASA) personnel aboard aircraft, orbital rockets and platforms, and a non- NASA vehicle, the Soyuz, are summarized. The valuable Recommended Practices for Human Space Flight Occupant Safety, published by the FAA Office of Commercial Space Transportation (FAA-AST) in 2014, are summarized. Medical recommendations for operationally critical flight crewmembers, published by the Aerospace Medical Association Commercial Spaceflight Working Group, are reviewed. FAA-AST approved SFP training available at three U.S. commercial companies is summarized. Activities of ASTM International Committee F47 on Commercial Spaceflight, formed in 2016, are reviewed. Finally, safety comparisons are made with another challenging environment, deep sea submersibles

    Real Time Monitoring of NADPH Concentrations in Corynebacterium glutamicum and Escherichia coli via the Genetically Encoded Sensor mBFP

    Get PDF
    Analyses of intracellular NADPH concentrations are prerequisites for the design of microbial production strains and process optimization. mBFP was described as metagenomics derived, blue fluorescent protein showing NADPH-dependent fluorescence. Characterization of mBFP showed a high specificity for binding of NADPH (KD 0.64 mM) and no binding of NADH, the protein exclusively amplified fluorescence of NADPH. mBFP catalyzed the NADPH-dependent reduction of benzaldehyde and further aldehydes, which fits to its classification as short chain dehydrogenase. For in vivo NADPH analyses a codon-optimized gene for mBFP was introduced into Corynebacterium glutamicum WT and the phosphoglucoisomerase-deficient strain C. glutamicum Δpgi, which accumulates high levels of NADPH. For determination of intracellular NADPH concentrations by mBFP a calibration method with permeabilized cells was developed. By this means an increase of intracellular NADPH concentrations within seconds after the addition of glucose to nutrient-starved cells of both C. glutamicum WT and C. glutamicum Δpgi was observed; as expected the internal NADPH concentration was significantly higher for C. glutamicum Δpgi (0.31 mM) when compared to C. glutamicum WT (0.19 mM). Addition of paraquat to E. coli cells carrying mBFP led as expected to an immediate decrease of intracellular NADPH concentrations, showing the versatile use of mBFP as intracellular sensor

    Where is the spectral weight in magnetic neutron scattering in the cuprates?

    Full text link
    We present estimates in the Hubbard and Heisenberg models for the spectral weight in magnetic neutron scattering experiments on the cuprates. With the aid of spin-wave theory and the time dependent Gutzwiller approximation we discuss how the spectral weight is distributed among the different channels and between high and low energies. In addition to the well known total moment sum rule we discuss sum rules for each component of the dynamical structure factor tensor which are peculiar for spin 1/2 systems. The various factors that reduce the spectral weight at the relevant energies are singled out and analyzed like: shielding factors, weight at electronic energies, multimagnon process etc. Although about 10% ~ 15% of the naively expected weight is detected in experiments after consideration of these factors the missing weight is within the experimental uncertainties. A large fraction of the spectral weight is hard to detect with present experimental conditions.Comment: 16 pages, 13 figures, submitted to PR
    • …
    corecore