995 research outputs found
Gutzwiller Charge Phase Diagram of Cuprates, including Electron-Phonon Coupling Effects
Besides significant electronic correlations, high-temperature superconductors
also show a strong coupling of electrons to a number of lattice modes. Combined
with the experimental detection of electronic inhomogeneities and ordering
phenomena in many high-T_c compounds, these features raise the question as to
what extent phonons are involved in the associated instabilities. Here we
address this problem based on the Hubbard model including a coupling to phonons
in order to capture several salient features of the phase diagram of hole-doped
cuprates. Charge degrees of freedom, which are suppressed by the large Hubbard
U near half-filling, are found to become active at a fairly low doping level.
We find that possible charge order is mainly driven by Fermi surface nesting,
with competition between a near-(pi,pi) order at low doping and antinodal
nesting at higher doping, very similar to the momentum structure of magnetic
fluctuations. The resulting nesting vectors are generally consistent with
photoemission and tunneling observations, evidence for charge density wave
(CDW) order in YBa_2Cu_3O_{7-delta} including Kohn anomalies, and suggestions
of competition between one- and two-q-vector nesting.Comment: This is a revised version of arXiv:1207.5715. 25 pages, 5 figures,
plus Supplement [7 pages, 7 figures], available as a pdf [click on other,
then Download Source, & extract pdf file from zip] Manuscript is under
consideration at the NJ
Time-dependent Gutzwiller theory of magnetic excitations in the Hubbard model
We use a spin-rotational invariant Gutzwiller energy functional to compute
random-phase-approximation-like (RPA) fluctuations on top of the Gutzwiller
approximation (GA). The method can be viewed as an extension of the previously
developed GA+RPA approach for the charge sector [G. Seibold and J. Lorenzana,
Phys. Rev. Lett. {\bf 86}, 2605 (2001)] with respect to the inclusion of the
magnetic excitations. Unlike the charge case, no assumptions about the time
evolution of the double occupancy are needed in this case. Interestingly, in a
spin-rotational invariant system, we find the correct degeneracy between
triplet excitations, showing the consistency of both computations. Since no
restrictions are imposed on the symmetry of the underlying saddle-point
solution, our approach is suitable for the evaluation of the magnetic
susceptibility and dynamical structure factor in strongly correlated
inhomogeneous systems. We present a detailed study of the quality of our
approach by comparing with exact diagonalization results and show its much
higher accuracy compared to the conventional Hartree-Fock+RPA theory. In
infinite dimensions, where the GA becomes exact for the Gutzwiller variational
energy, we evaluate ferromagnetic and antiferromagnetic instabilities from the
transverse magnetic susceptibility. The resulting phase diagram is in complete
agreement with previous variational computations.Comment: 12 pages, 8 figure
Inhomogeneous Gutzwiller approximation with random phase fluctuations for the Hubbard model
We present a detailed study of the time-dependent Gutzwiller approximation
for the Hubbard model. The formalism, labelled GA+RPA, allows us to compute
random-phase approximation-like (RPA) fluctuations on top of the Gutzwiller
approximation (GA). No restrictions are imposed on the charge and spin
configurations which makes the method suitable for the calculation of linear
excitations around symmetry-broken solutions. Well-behaved sum rules are obeyed
as in the Hartree-Fock (HF) plus RPA approach. Analytical results for a
two-site model and numerical results for charge-charge and current-current
dynamical correlation functions in one and two dimensions are compared with
exact and HF+RPA results, supporting the much better performance of GA+RPA with
respect to conventional HF+RPA theory.Comment: 14 pages, 6 figure
Trial design: how must we move ahead?
Scleroderma is clinically heterogeneous and a variety of plausible mechanisms of disease have been hypothesized. Recent years have witnessed a significant improvement in overall survival although all of the gains in management have been therapies for specific organ involvement, e.g. renal crisis and pulmonary arterial hypertension. Future studies will rely on improved clinical science, which involves structured validation of proposed measures of outcome; development of a combined response index; and further refinement of specific subsets of disease expression. Immunoablation with stem cell reconstitution is an example of aggressive therapy chosen as appropriate for a particularly severe disease subset and in whom the pilot data are encouraging. Good science and clinical ethics force continued consideration of equipoise between risk and benefi
Vortex, skyrmion and elliptical domain wall textures in the two-dimensional Hubbard model
The spin and charge texture around doped holes in the two-dimensional Hubbard
model is calculated within an unrestricted spin rotational invariant
slave-boson approach. In the first part we examine in detail the spin structure
around two holes doped in the half-filled system where we have studied cluster
sizes up to 10 x 10. It turns out that the most stable configuration
corresponds to a vortex-antivortex pair which has lower energy than the
Neel-type bipolaron even when one takes the far field contribution into
account. We also obtain skyrmions as local minima of the energy functional but
with higher total energy than the vortex solutions. Additionally we have
investigated the stability of elliptical domain walls for commensurate hole
concentrations. We find that (i) these phases correspond to local minima of the
energy functional only in case of partially filled walls, (ii) elliptical
domain walls are only stable in the low doping regime.Comment: 7 pages, 6 figures, accepted for Phys. Rev.
Dynamical charge and spin density wave scattering in cuprate superconductor
We show that a variety of spectral features in high-T_c cuprates can be
understood from the coupling of charge carriers to some kind of dynamical order
which we exemplify in terms of fluctuating charge and spin density waves. Two
theoretical models are investigated which capture different aspects of such
dynamical scattering. The first approach leaves the ground state in the
disordered phase but couples the electrons to bosonic degrees of freedom,
corresponding to the quasi singular scattering associated with the closeness to
an ordered phase. The second, more phenomological approach starts from the
construction of a frequency dependent order parameter which vanishes for small
energies. Both theories capture scanning tunneling microscopy and angle-resoved
photoemission experiments which suggest the protection of quasiparticles close
to the Fermi energy but the manifestation of long-range order at higher
frequencies.Comment: 27 pages, 13 figures, to appear in New J. Phy
- …