14 research outputs found

    Effect of Chemical Pretreatments on the Physical Properties of Kiwi

    Get PDF
    In this work the effect of pre-treatments on the physical properties of fresh kiwi was studied. For that, a set of tests using chemical pretreatments was used, in which the samples were subjected to aqueous solutions of ascorbic acid and potassium metabisulfite at concentrations of 0.25% and 1% (w/v) for periods of 30 and 60 minutes, in order to understand the implications of the treatments in the color and texture of the kiwi as compared to its original properties. The results showed that the kiwi treated with ascorbic acid changed its color very intensively when compared to the fresh product, and this trend was intensified after storage. Contrarily, when potassium metabisulfite was used, the changes in color were quite negligible right after the treatment and even lower after the storage period of 6 days under refrigeration. After the treatments with both solutions, the kiwi texture was drastically changed, diminishing hardness considerably and increasing elasticity for all treatments. The same could be observed after six days of refrigeration

    Circulating Dopamine Is Regulated by Dietary Glucose and Controls Glucagon-like 1 Peptide Action in White Adipose Tissue

    Get PDF
    Funding: This work was supported by a grant from GIFT (Grupo de Investigação Fundamental e Translational) from the Portugal Society of Diabetes and Portugal Foundation for Science and Technology (PEst UID/NEU/04539/2013 and UID/NEU/04539/2019: CNC.IBILI; PEst UIDB/04539/2020 and UIDP/04539/2020: CIBB). G.T. and D.R.S. were supported by Ph.D. Grants from the Portuguese Foundation for Science and Technology (PD/BD/127822/2016 and 2021.08160.BD respectively). J.F.S. is supported by a contract from the Portuguese Foundation for Science and Technology (CEEC IND/02428/2018).Dopamine directly acts in the liver and white adipose tissue (WAT) to regulate insulin signaling, glucose uptake, and catabolic activity. Given that dopamine is secreted by the gut and regulates insulin secretion in the pancreas, we aimed to determine its regulation by nutritional cues and its role in regulating glucagon-like peptide 1 (GLP-1) action in WAT. Solutions with different nutrients were administered to Wistar rats and postprandial dopamine levels showed elevations following a mixed meal and glucose intake. In high-fat diet-fed diabetic Goto-Kakizaki rats, sleeve gastrectomy upregulated dopaminergic machinery, showing the role of the gut in dopamine signaling in WAT. Bromocriptine treatment in the same model increased GLP-1R in WAT, showing the role of dopamine in regulating GLP-1R. By contrast, treatment with the GLP-1 receptor agonist Liraglutide had no impact on dopamine receptors. GLP-1 and dopamine crosstalk was shown in rat WAT explants, since dopamine upregulated GLP-1-induced AMPK activity in mesenteric WAT in the presence of the D2R and D3R inhibitor Domperidone. In human WAT, dopamine receptor 1 (D1DR) and GLP-1R expression were correlated. Our results point out a dietary and gut regulation of plasma dopamine, acting in the WAT to regulate GLP-1 action. Together with the known dopamine action in the pancreas, such results may identify new therapeutic opportunities to improve metabolic control in metabolic disorders.publishersversionpublishe

    Circulating Dopamine Is Regulated by Dietary Glucose and Controls Glucagon-like 1 Peptide Action in White Adipose Tissue

    No full text
    Dopamine directly acts in the liver and white adipose tissue (WAT) to regulate insulin signaling, glucose uptake, and catabolic activity. Given that dopamine is secreted by the gut and regulates insulin secretion in the pancreas, we aimed to determine its regulation by nutritional cues and its role in regulating glucagon-like peptide 1 (GLP-1) action in WAT. Solutions with different nutrients were administered to Wistar rats and postprandial dopamine levels showed elevations following a mixed meal and glucose intake. In high-fat diet-fed diabetic Goto-Kakizaki rats, sleeve gastrectomy upregulated dopaminergic machinery, showing the role of the gut in dopamine signaling in WAT. Bromocriptine treatment in the same model increased GLP-1R in WAT, showing the role of dopamine in regulating GLP-1R. By contrast, treatment with the GLP-1 receptor agonist Liraglutide had no impact on dopamine receptors. GLP-1 and dopamine crosstalk was shown in rat WAT explants, since dopamine upregulated GLP-1-induced AMPK activity in mesenteric WAT in the presence of the D2R and D3R inhibitor Domperidone. In human WAT, dopamine receptor 1 (D1DR) and GLP-1R expression were correlated. Our results point out a dietary and gut regulation of plasma dopamine, acting in the WAT to regulate GLP-1 action. Together with the known dopamine action in the pancreas, such results may identify new therapeutic opportunities to improve metabolic control in metabolic disorders

    Evaluating the Impact of Different Hypercaloric Diets on Weight Gain, Insulin Resistance, Glucose Intolerance, and its Comorbidities in Rats

    No full text
    Animal experimentation has a long history in the study of metabolic syndrome-related disorders. However, no consensus exists on the best models to study these syndromes. Knowing that different diets can precipitate different metabolic disease phenotypes, herein we characterized several hypercaloric rat models of obesity and type 2 diabetes, comparing each with a genetic model, with the aim of identifying the most appropriate model of metabolic disease. The effect of hypercaloric diets (high fat (HF), high sucrose (HSu), high fat plus high sucrose (HFHSu) and high fat plus streptozotocin (HF+STZ) during different exposure times (HF 3 weeks, HF 19 weeks, HSu 4 weeks, HSu 16 weeks, HFHSu 25 weeks, HF3 weeks + STZ) were compared with the Zucker fatty rat. Each model was evaluated for weight gain, fat mass, fasting plasma glucose, insulin and C-peptide, insulin sensitivity, glucose tolerance, lipid profile and liver lipid deposition, blood pressure, and autonomic nervous system function. All animal models presented with insulin resistance and dyslipidemia except the HF+STZ and HSu 4 weeks, which argues against the use of these models as metabolic syndrome models. Of the remaining animal models, a higher weight gain was exhibited by the Zucker fatty rat and wild type rats submitted to a HF diet for 19 weeks. We conclude that the latter model presents a phenotype most consistent with that observed in humans with metabolic disease, exhibiting the majority of the phenotypic features and comorbidities associated with type 2 diabetes in humans

    Metformin promotes isolated rat liver mitochondria impairment

    Get PDF
    Abstract Metformin, a drug widely used in the treatment of type 2 diabetes, has recently received attention due to the new and contrasting findings regarding its effects on mitochondrial function. In the present study, we evaluated the effect of metformin in isolated rat liver mitochondria status. We observed that metformin concentrations =8 mM induce an impairment of the respiratory chain characterized by a decrease in RCR and state 3 respiration. However, only metformin concentrations =10 mM affect the oxidative phosphorylation system by decreasing the mitochondrial transmembrane potential and increasing the repolarization lag phase. Moreover, our results show that metformin does not prevent H2O2 production, neither protects against lipid peroxidation induced by the pro-oxidant pair ADP/Fe2+. In addition, we observed that metformin exacerbates Ca2+-induced permeability transition pore opening by decreasing the capacity of mitochondria to accumulate Ca2+ and increasing the oxidation of thiol groups. Taken together, our results show that metformin can promote liver mitochondria injury predisposing to cell death
    corecore