312 research outputs found
Erythroderma: A clinical study of 97 cases
BACKGROUND: Erythroderma is a rare skin disorder that may be caused by a variety of underlying dermatoses, infections, systemic diseases and drugs. METHODS: We reviewed the clinical, laboratory and biopsy material of 97 patients diagnosed with erythroderma who were treated in our department over a 6-year period (1996 through 2002). RESULTS: The male-female ratio was 1.85:1. The mean age at diagnosis was 46.2 years. The most common causative factors were dermatoses (59.7%), followed by drug reactions (21.6%), malignancies (11.3%) and idiopathic causes (7.2%). Carbamazepine was the most common drug (57.1%). The best clinicopathologic correlation was found in cutaneous T-cell lymphoma and pityriasis rubra pilaris related erythroderma. Apart from scaling and erythema that were present in all patients, pruritus was the most common finding (97.5%), followed by fever (33.6%), lymphadenopathy (21.3%), edema (14.4%) and hyperkeratosis (7.2%). CONCLUSION: This study outlines that underlying etiologic factors of erythroderma may show geographic variations. Our series had a high percentage of erythroderma secondary to preexisting dermatoses and a low percentage of idiopathic cases. There was no HIV-infected patient among our series based on multiple serum antibody tests. The clinical features of erythroderma were identical, irrespective of the etiology. The onset of the disease was usually insidious except in drug-induced erythroderma, where it was acute. The group associated with the best prognosis was that related to drugs
LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry
We examine the implications of the recent CDF measurement of the top-quark
forward-backward asymmetry, focusing on a scenario with a new color octet
vector boson at 1-3 TeV. We study several models, as well as a general
effective field theory, and determine the parameter space which provides the
best simultaneous fit to the CDF asymmetry, the Tevatron top pair production
cross section, and the exclusion regions from LHC dijet resonance and contact
interaction searches. Flavor constraints on these models are more subtle and
less severe than the literature indicates. We find a large region of allowed
parameter space at high axigluon mass and a smaller region at low mass; we
match the latter to an SU(3)xSU(3)/SU(3) coset model with a heavy vector-like
fermion. Our scenario produces discoverable effects at the LHC with only 1-2
inverse femtobarns of luminosity at 7-8 TeV. Lastly, we point out that a
Tevatron measurement of the b-quark forward-backward asymmetry would be very
helpful in characterizing the physics underlying the top-quark asymmetry.Comment: 35 pages, 10 figures, 4 table
Clinical outcome of skin yaws lesions after treatment with benzathinebenzylpenicillin in a pygmy population in Lobaye, Central African Republic
<p>Abstract</p> <p>Background</p> <p>Yaws is a bacterial skin and bone infectious disease caused by <it>Treponema pallidum pertenue</it>. It is endemic, particularly among pygmies in Central African Republic. To assess the clinical cure rate after treatment with benzathinepenicillin in this population, we conducted a cohort survey of 243 patients in the Lobaye region.</p> <p>Findings and conclusion</p> <p>The rate of healing of lesions after 5 months was 95.9%. This relatively satisfactory level of therapeutic response implies that yaws could be controlled in the Central African Republic. Thus, reinforcement of the management of new cases and of contacts is suggested.</p
Discovering context-specific relationships from biological literature by using multi-level context terms
<p>Abstract</p> <p>Background</p> <p>The Swanson's ABC model is powerful to infer hidden relationships buried in biological literature. However, the model is inadequate to infer relations with context information. In addition, the model generates a very large amount of candidates from biological text, and it is a semi-automatic, labor-intensive technique requiring human expert's manual input. To tackle these problems, we incorporate context terms to infer relations between AB interactions and BC interactions.</p> <p>Methods</p> <p>We propose 3 steps to discover meaningful hidden relationships between drugs and diseases: 1) multi-level (gene, drug, disease, symptom) entity recognition, 2) interaction extraction (drug-gene, gene-disease) from literature, 3) context vector based similarity score calculation. Subsequently, we evaluate our hypothesis with the datasets of the "Alzheimer's disease" related 77,711 PubMed abstracts. As golden standards, PharmGKB and CTD databases are used. Evaluation is conducted in 2 ways: first, comparing precision of the proposed method and the previous method and second, analysing top 10 ranked results to examine whether highly ranked interactions are truly meaningful or not.</p> <p>Results</p> <p>The results indicate that context-based relation inference achieved better precision than the previous ABC model approach. The literature analysis also shows that interactions inferred by the context-based approach are more meaningful than interactions by the previous ABC model.</p> <p>Conclusions</p> <p>We propose a novel interaction inference technique that incorporates context term vectors into the ABC model to discover meaningful hidden relationships. By utilizing multi-level context terms, our model shows better performance than the previous ABC model.</p
Improving the Top Quark Forward-Backward Asymmetry Measurement at the LHC
At the LHC, top quark pairs are dominantly produced from gluons, making it
difficult to measure the top quark forward-backward asymmetry. To improve the
asymmetry measurement, we study variables that can distinguish between top
quarks produced from quarks and those from gluons: the invariant mass of the
top pair, the rapidity of the top-antitop system in the lab frame, the rapidity
of the top quark in the top-antitop rest frame, the top quark polarization and
the top-antitop spin correlation. We combine all the variables in a likelihood
discriminant method to separate quark-initiated events from gluon-initiated
events. We apply our method on models including G-prime's and W-prime's
motivated by the recent observation of a large top quark forward-backward
asymmetry at the Tevatron. We have found that the significance of the asymmetry
measurement can be improved by 10% to 30%. At the same time, the central values
of the asymmetry increase by 40% to 100%. We have also analytically derived the
best spin quantization axes for studying top quark polarization as well as
spin-correlation for the new physics models.Comment: 26 pages, 11 figure
First measurement of the cross-correlation of CMB lensing and galaxy lensing
We measure the cross-correlation of cosmic microwave background (CMB) lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is measured for the first time with a significance of 4.2σ, which corresponds to a 12% constraint on the amplitude of density fluctuations at redshifts ∼0.9. With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements
Adult Circadian Behavior in Drosophila Requires Developmental Expression of cycle, But Not period
Circadian clocks have evolved as internal time keeping mechanisms that allow anticipation of daily environmental changes and organization of a daily program of physiological and behavioral rhythms. To better examine the mechanisms underlying circadian clocks in animals and to ask whether clock gene expression and function during development affected subsequent daily time keeping in the adult, we used the genetic tools available in Drosophila to conditionally manipulate the function of the CYCLE component of the positive regulator CLOCK/CYCLE (CLK/CYC) or its negative feedback inhibitor PERIOD (PER). Differential manipulation of clock function during development and in adulthood indicated that there is no developmental requirement for either a running clock mechanism or expression of per. However, conditional suppression of CLK/CYC activity either via per over-expression or cyc depletion during metamorphosis resulted in persistent arrhythmic behavior in the adult. Two distinct mechanisms were identified that may contribute to this developmental function of CLK/CYC and both involve the ventral lateral clock neurons (LNvs) that are crucial to circadian control of locomotor behavior: (1) selective depletion of cyc expression in the LNvs resulted in abnormal peptidergic small-LNv dorsal projections, and (2) PER expression rhythms in the adult LNvs appeared to be affected by developmental inhibition of CLK/CYC activity. Given the conservation of clock genes and circuits among animals, this study provides a rationale for investigating a possible similar developmental role of the homologous mammalian CLOCK/BMAL1 complex
Carboxylic ester hydrolases from hyperthermophiles
Carboxylic ester hydrolyzing enzymes constitute a large group of enzymes that are able to catalyze the hydrolysis, synthesis or transesterification of an ester bond. They can be found in all three domains of life, including the group of hyperthermophilic bacteria and archaea. Esterases from the latter group often exhibit a high intrinsic stability, which makes them of interest them for various biotechnological applications. In this review, we aim to give an overview of all characterized carboxylic ester hydrolases from hyperthermophilic microorganisms and provide details on their substrate specificity, kinetics, optimal catalytic conditions, and stability. Approaches for the discovery of new carboxylic ester hydrolases are described. Special attention is given to the currently characterized hyperthermophilic enzymes with respect to their biochemical properties, 3D structure, and classification
Missing value imputation for microarray gene expression data using histone acetylation information
<p>Abstract</p> <p>Background</p> <p>It is an important pre-processing step to accurately estimate missing values in microarray data, because complete datasets are required in numerous expression profile analysis in bioinformatics. Although several methods have been suggested, their performances are not satisfactory for datasets with high missing percentages.</p> <p>Results</p> <p>The paper explores the feasibility of doing missing value imputation with the help of gene regulatory mechanism. An imputation framework called histone acetylation information aided imputation method (HAIimpute method) is presented. It incorporates the histone acetylation information into the conventional KNN(<it>k</it>-nearest neighbor) and LLS(local least square) imputation algorithms for final prediction of the missing values. The experimental results indicated that the use of acetylation information can provide significant improvements in microarray imputation accuracy. The HAIimpute methods consistently improve the widely used methods such as KNN and LLS in terms of normalized root mean squared error (NRMSE). Meanwhile, the genes imputed by HAIimpute methods are more correlated with the original complete genes in terms of Pearson correlation coefficients. Furthermore, the proposed methods also outperform GOimpute, which is one of the existing related methods that use the functional similarity as the external information.</p> <p>Conclusion</p> <p>We demonstrated that the using of histone acetylation information could greatly improve the performance of the imputation especially at high missing percentages. This idea can be generalized to various imputation methods to facilitate the performance. Moreover, with more knowledge accumulated on gene regulatory mechanism in addition to histone acetylation, the performance of our approach can be further improved and verified.</p
- …