6 research outputs found

    Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms

    Get PDF
    Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. Video Abstract [Figure presented] Keywords: type 2 diabetes (T2D); genetics; disease mechanism; SLC16A11; MCT11; solute carrier (SLC); monocarboxylates; fatty acid metabolism; lipid metabolism; precision medicin

    Contribution of Known Genetic Risk Variants to Dyslipidemias and Type 2 Diabetes in Mexico: A Population-Based Nationwide Study

    No full text
    Dyslipidemias are common risk factors for the development of chronic disorders including type 2 diabetes (T2D). Over 100 associated loci have been identified but few reports have evaluated the population attributable fraction captured by them in population-based nationwide surveys. Therefore, we determined the population contribution of a set of known genetic risk variants to the development of dyslipidemias and T2D in Mexico. This study included 1665 participants from a Mexican National Health Survey carried out in the year 2000. It is a probabilistic complex sample survey of households, which comprises representative data at a national level. 103 previously reported SNPs associated with different dyslipidemias or T2D were genotyped and used to compute polygenic risk scores. We found that the previously known variants associated with dyslipidemias explain at most 7% of the total risk variance of lipid levels. In contrast, the known genetic risk component for T2D explained a negligible amount of variance (0.1%). Notably, variants derived from the Native-American ancestry have the strongest effect and contribute with a high proportion of the variance. These results support the need for additional studies aimed to identify specific genetic risk variants for Mexican population

    A novel nonsense mutation in the insulin receptor gene in a patient with HAIR-AN syndrome and endometrial cancer

    No full text
    Severe insulin resistance can be caused by rare genetic defects in the insulin receptor known as insulin receptoropathies. These genetic defects cause a wide spectrum of clinical manifestations ranging from mild syndromes to lethal disorders. Among those is the HAIR-AN an extreme subtype of polycystic ovary syndrome (PCOS). We present a case of a 29-year-old woman with amenorrhea, severe insulin resistance, hirsutism, and acanthosis nigricans who also developed endometrial cancer. She was found to carry a novel heterozygous nonsense mutation insulin receptor gene (INSR). The mutation was inherited from the mother. Levels of insulin receptor and AKT were measured using Western-Blot from peripheral blood mononuclear cells and were both decreased. Thus, we conclude that the identified mutation in the insulin receptor gene and lead to decreased activity of the downstream signaling of the insulin pathway
    corecore