5,519 research outputs found
La reforma fiscal ante el esfuerzo productivo y la asunción de riesgos
Desde que en 1977 se inicia la Reforma Tributaria, junto a una multiplicidad de otros cambios institucionales en diversas áreas, se produce la conocida Reforma Fiscal que afectará de manera directa al ahorro, de una parte, y a las decisiones de inversión de las empresas, por otra. Se analiza cómo afecta el cambio tributario a la disposición ante el esfuerzo, la correlación entre renta y esfuerzo así como su influencia sobre las decisiones de inversión empresarial por medio de nuevos incentivos a la inversión. Este cambio tributario no puede valorarse negativamente, ni
ha reducido los incentivos al ahorro, ni va a afectar negativamente las decisiones de inversión empresarial.Since in 1977 starts the Tax Reform, along with a multiplicity of other institutional changes in various areas, occurs the known Fiscal Reform that will directly affect the savings, on the one hand, and the investment decisions of firms, on the other. Discusses how it affects the tax change to the layout before the effort, the correlation between income and effort as well as their influence on the decisions of business investment through new investment incentives. This tax change cannot be assessed negatively, since it has not reduced savings incentives and it has not affected the decisions of business investment
Recommended from our members
Controlled Release of Vancomycin and Tigecycline from an Orthopaedic Implant Coating Prevents Staphylococcus aureus Infection in an Open Fracture Animal Model.
Introduction:Treatment of open fractures routinely involves multiple surgeries and delayed definitive fracture fixation because of concern for infection. If implants were made less susceptible to infection, a one-stage procedure with intramedullary nailing would be more feasible, which would reduce morbidity and improve outcomes. Methods:In this study, a novel open fracture mouse model was developed using Staphylococcus aureus (S. aureus) and single-stage intramedullary fixation. The model was used to evaluate whether implants coated with a novel "smart" polymer coating containing vancomycin or tigecycline would be colonized by bacteria in an open fracture model infected with S. aureus. In vivo bioluminescence, ex vivo CFUs, and X-ray images were evaluated over a 42-day postoperative period. Results:We found evidence of a markedly decreased bacterial burden with the local release of vancomycin and tigecycline from the PEG-PPS polymer compared to polymer alone. Vancomycin was released in a controlled fashion and maintained local drug concentrations above the minimum inhibition concentration for S. aureus for greater than 7 days postoperatively. Bacteria were reduced 139-fold from implants containing vancomycin and undetected from the bone and soft tissue. Tigecycline coatings led to a 5991-fold reduction in bacteria isolated from bone and soft tissue and 15-fold reduction on the implants compared to polymer alone. Antibiotic coatings also prevented osteomyelitis and implant loosening as observed on X-ray. Conclusion:Vancomycin and tigecycline can be encapsulated in a polymer coating and released over time to maintain therapeutic levels during the perioperative period. Our results suggest that antibiotic coatings can be used to prevent implant infection and osteomyelitis in the setting of open fracture. This novel open fracture mouse model can be used as a powerful in vivo preclinical tool to evaluate and optimize the treatment of open fractures before further studies in humans
Multi-objective design of post-tensioned concrete road bridges using artificial neural networks
[EN] In order to minimize the total expected cost, bridges have to be designed for safety and durability. This paper considers the cost, the safety, and the corrosion initiation time to design post-tensioned concrete box-girder road bridges. The deck is modeled by finite elements based on problem variables such as the cross-section geometry, the concrete grade, and the reinforcing and post-tensioning steel. An integrated multi-objective harmony search with artificial neural networks (ANNs) is proposed to reduce the high computing time required for the finite-element analysis and the increment in conflicting objectives. ANNs are trained through the results of previous bridge performance evaluations. Then, ANNs are used to evaluate the constraints and provide a direction towards the Pareto front. Finally, exact methods actualize and improve the Pareto set. The results show that the harmony search parameters should be progressively changed in a diversification-intensification strategy. This methodology provides trade-off solutions that are the cheapest ones for the safety and durability levels considered. Therefore, it is possible to choose an alternative that can be easily adjusted to each need.The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (BRIDLIFE Project: BIA2014-56574-R) and the Research and Development Support Program of Universitat Politecnica de Valencia (PAID-02-15).García-Segura, T.; Yepes, V.; Frangopol, D. (2017). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization. 56(1):139-150. doi:10.1007/s00158-017-1653-0S139150561Alberdi R, Khandelwal K (2015) Comparison of robustness of metaheuristic algorithms for steel frame optimization. Eng Struct 102:40–60. doi: 10.1016/j.engstruct.2015.08.012Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur J Oper Res 181:1653–1669. doi: 10.1016/j.ejor.2006.08.008Cai H, Aref AJ (2015) A genetic algorithm-based multi-objective optimization for hybrid fiber reinforced polymeric deck and cable system of cable-stayed bridges. Struct Multidiscip Optim 52:583–594. doi: 10.1007/s00158-015-1266-4Cao MS, Pan LX, Gao YF, Novák D, Ding ZC, Lehký D, Li XL (2015) Neural network ensemble-based parameter sensitivity analysis in civil engineering systems. Neural Comput Appl 1–8. doi: 10.1007/s00521-015-2132-4Chatterjee S, Sarkar S, Hore S, Dey N, Ashour AS, Balas VE (2016) Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings. Neural Comput Appl. 1–12. doi: 10.1007/s00521-016-2190-2Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191:1245–1287. doi: 10.1016/S0045-7825(01)00323-1Coello CAC, Lamont GB, Veldhuizen DA Van (2006) Evolutionary algorithms for solving multi-objective problems. Springer-Verlag New York, IncComputers and Structures Inc. (2015) Introduction to CSiBridge. Integrated 3D bridge analysis, design and rating. Berkeley, California, USADeb K (2011) Multi-objective optimisation using evolutionary algorithms: an introduction. In: Wang L, Ng AHC, Deb K (eds) Multi-objective evolutionary optimisation for product design and manufacturing. Springer, London, pp 3–34Deb K, Nain PKS (2007) An evolutionary multi-objective adaptive meta-modeling procedure using artificial neural networks. In: Yang S, Ong Y-S, Jin Y (eds) Evolutionary computation in dynamic and uncertain environments. Springer, Berlin, pp 297–322Dong Y, Frangopol DM, Saydam D (2013) Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthq Eng Struct Dyn 42:1451–1467. doi: 10.1002/eqe.2281Emmerich M, Naujoks B (2004) Metamodel assisted multiobjective optimisation strategies and their application in airfoil design. In: Parmee IC (ed) Adaptive computing in design and manufacture VI. Springer, London, pp 249–260European Committee for Standardisation (2003) EN 1991–2:2003. Eurocode 1: Actions on structures-Part 2: Traffic loads bridgesEuropean Committee for Standardisation (2005) EN1992-2:2005. Eurocode 2: Design of concrete structures- Part 2: Concrete Bridge-Design and detailing rules. BrusselsFomento M (2008) EHE-08: code on structural concrete. Ministerio de Fomento, MadridFomento M (2011) IAP-11: code on the actions for the design of road bridges. Ministerio de Fomento, MadridGarcía-Segura T, Yepes V (2016) Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Eng Struct 125:325–336. doi: 10.1016/j.engstruct.2016.07.012García-Segura T, Yepes V, Alcalá J (2014a) Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. Int J Life Cycle Assess 19:3–12. doi: 10.1007/s11367-013-0614-0García-Segura T, Yepes V, Martí JV, Alcalá J (2014b) Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Lat Am J Solids Struct 11:1190–1205. doi: 10.1590/S1679-78252014000700007García-Segura T, Yepes V, Alcalá J, Pérez-López E (2015) Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Eng Struct 92:112–122. doi: 10.1016/j.engstruct.2015.03.015Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76:60–68Giannakoglou KC (2002) Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence. Prog Aerosp Sci 38:43–76. doi: 10.1016/S0376-0421(01)00019-7Hare W, Nutini J, Tesfamariam S (2013) A survey of non-gradient optimization methods in structural engineering. Adv Eng Softw 59:19–28. doi: 10.1016/j.advengsoft.2013.03.001Martí JV, Yepes V, González-Vidosa F (2015) Memetic algorithm approach to designing precast-prestressed concrete road bridges with steel fiber reinforcement. J Struct Eng 141:4014114. doi: 10.1061/(ASCE)ST.1943-541X.0001058Martí JV, García-Segura T, Yepes V (2016) Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. J Clean Prod 120:231–240. doi: 10.1016/j.jclepro.2016.02.024Martinez-Martin FJ, Gonzalez-Vidosa F, Hospitaler A, Yepes V (2012) Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. J Zhejiang Univ Sci A 13:420–432. doi: 10.1631/jzus.A1100304Martini K (2011) Harmony search method for multimodal size, shape, and topology optimization of structural frameworks. J Struct Eng 137:1332–1339. doi: 10.1061/(ASCE)ST.1943-541X.0000378Marti-Vargas JR, Ferri FJ, Yepes V (2013) Prediction of the transfer length of prestressing strands with neural networks. Comput Concr 12:187–209. doi: 10.12989/cac.2013.12.2.187McGee R (1999) Modeling of durability performance of Tasmanian bridges. In: Melchers R, M.G S (eds) Applications of statistics and probability: civil engineering, reliability and risk analysis. A.A. Balkema, Rotterdam, pp 297–306Papadakis VG, Roumeliotis AP, Fardis MN, Vagenas CG (1996) Mathematical modelling of chloride effect on concrete du-rability and protection measures. In: Dhir RK, Jones MR (eds) Concrete repair, rehabilitation and protection. E&FN Spon, London, pp 165–174Paya I, Yepes V, González-Vidosa F, Hospitaler A (2008) Multiobjective optimization of reinforced concrete building frames by simulated annealing. Comput Civ Infrastruct Eng 23:596–610. doi: 10.1111/j.1467-8667.2008.00561.xProtopapadakis E, Schauer M, Pierri E et al (2016) A genetically optimized neural classifier applied to numerical pile integrity tests considering concrete piles. Comput Struct 162:68–79. doi: 10.1016/j.compstruc.2015.08.005Quaglia CP, Yu N, Thrall AP, Paolucci S (2014) Balancing energy efficiency and structural performance through multi-objective shape optimization: Case study of a rapidly deployable origami-inspired shelter. Energ Build 82:733–745. doi: 10.1016/j.enbuild.2014.07.063Ricart J, Hüttemann G, Lima J, Barán B (2011) Multiobjective harmony search algorithm proposals. Electron Notes Theor Comput Sci 281:51–67. doi: 10.1016/j.entcs.2011.11.025Sanad A, Saka MP (2001) Prediction of ultimate shear strength of reinforced-concrete deep beams using neural networks. J Struct Eng 127:818–828. doi: 10.1061/(ASCE)0733-9445(2001)127:7(818)Sarma KC, Adeli H (1998) Cost optimization of concrete structures. J Struct Eng 124:570–578. doi: 10.1061/(ASCE)0733-9445(1998)124:5(570)Shi X (2016) Experimental and modeling studies on installation of arc sprayed Zn anodes for protection of reinforced concrete structures. Front Struct Civ Eng 10:1–11. doi: 10.1007/s11709-016-0312-7Sreehari VM, Maiti DK (2016) Buckling load enhancement of damaged composite plates under hygrothermal environment using unified particle swarm optimization. Struct Multidiscip Optim 1–11. doi: 10.1007/s00158-016-1498-yTorres-Machi C, Chamorro A, Pellicer E et al (2015) Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transp Res Rec J Transp Res Board 2523:56–63. doi: 10.3141/2523-07Vu KAT, Stewart MG (2000) Structural reliability of concrete bridges including improved chloride-induced corrosion models. Struct Saf 22:313–333. doi: 10.1016/S0167-4730(00)00018-7Xu H, Gao XZ, Wang T, Xue K (2010) Harmony search optimization algorithm: application to a reconfigurable mobile robot prototype. In: Geem ZW (ed) Recent advances in harmony search algorithm. Springer, Berlin, pp 11–22Yepes V, García-Segura T, Moreno-Jiménez JM (2015a) A cognitive approach for the multi-objective optimization of RC structural problems. Arch Civ Mech Eng 15:1024–1036. doi: 10.1016/j.acme.2015.05.001Yepes V, Martí JV, García-Segura T (2015b) Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Autom Constr 49:123–134. doi: 10.1016/j.autcon.2014.10.013Zavala GR, Nebro AJ, Luna F, Coello Coello CA (2013) A survey of multi-objective metaheuristics applied to structural optimization. Struct Multidiscip Optim 49:537–558. doi: 10.1007/s00158-013-0996-4Zavrtanik N, Prosen J, Tušar M, Turk G (2016) The use of artificial neural networks for modeling air void content in aggregate mixture. Autom Constr 63:155–161. doi: 10.1016/j.autcon.2015.12.009Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Eiben AE, Bäck T, Schoenauer M, Schwefel H-P (eds) Conference on parallel problem solving from nature- PPSN V. Springer Berlin Heidelberg, Amsterdam, The Netherlands, pp 292–30
Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge
[EN] The design of a structure is generally carried out according to a deterministic approach. However, all structural problems have associated initial uncertain parameters that can differ from the design value. This becomes important when the goal is to reach optimized structures, as a small variation of these initial uncertain parameters can have a big influence on the structural behavior. The objective of robust design optimization is to obtain an optimum design with the lowest possible variation of the objective functions. For this purpose, a probabilistic optimization is necessary to obtain the statistical parameters that represent the mean value and variation of the objective function considered. However, one of the disadvantages of the optimal robust design is its high computational cost. In this paper, robust design optimization is applied to design a continuous prestressed concrete box-girder pedestrian bridge that is optimum in terms of its cost and robust in terms of structural stability. Furthermore, Latin hypercube sampling and the kriging metamodel are used to deal with the high computational cost. Results show that the main variables that control the structural behavior are the depth of the cross-section and compressive strength of the concrete and that a compromise solution between the optimal cost and the robustness of the design can be reached.This research was funded by the Ministerio de Economia, Ciencia y Competitividad and FEDER funding grant number [BIA2017-85098-R].Penadés-Plà, V.; García-Segura, T.; Yepes, V. (2020). Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge. Mathematics. 8(3):1-14. https://doi.org/10.3390/math8030398S11483Lee, K.-H., & Kang, D.-H. (2006). A robust optimization using the statistics based on kriging metamodel. Journal of Mechanical Science and Technology, 20(8), 1169-1182. doi:10.1007/bf02916016Carbonell, A., González-Vidosa, F., & Yepes, V. (2011). Design of reinforced concrete road vaults by heuristic optimization. Advances in Engineering Software, 42(4), 151-159. doi:10.1016/j.advengsoft.2011.01.002Ahsan, R., Rana, S., & Ghani, S. N. (2012). Cost Optimum Design of Posttensioned I-Girder Bridge Using Global Optimization Algorithm. Journal of Structural Engineering, 138(2), 273-284. doi:10.1061/(asce)st.1943-541x.0000458García-Segura, T., Yepes, V., Martí, J. V., & Alcalá, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190-1205. doi:10.1590/s1679-78252014000700007Pnevmatikos, N. G., & Thomos, G. C. (2013). Stochastic structural control under earthquake excitations. Structural Control and Health Monitoring, 21(4), 620-633. doi:10.1002/stc.1589García-Segura, T., & Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325-336. doi:10.1016/j.engstruct.2016.07.012Martí, J. V., García-Segura, T., & Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231-240. doi:10.1016/j.jclepro.2016.02.024Yepes, V., Martí, J. V., García-Segura, T., & González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749. doi:10.1016/j.acme.2017.02.006Sun, X., Fu, H., & Zeng, J. (2018). Robust Approximate Optimality Conditions for Uncertain Nonsmooth Optimization with Infinite Number of Constraints. Mathematics, 7(1), 12. doi:10.3390/math7010012Rodriguez-Gonzalez, P. T., Rico-Ramirez, V., Rico-Martinez, R., & Diwekar, U. M. (2019). A New Approach to Solving Stochastic Optimal Control Problems. Mathematics, 7(12), 1207. doi:10.3390/math7121207Moayyeri, N., Gharehbaghi, S., & Plevris, V. (2019). Cost-Based Optimum Design of Reinforced Concrete Retaining Walls Considering Different Methods of Bearing Capacity Computation. Mathematics, 7(12), 1232. doi:10.3390/math7121232Sierra, L. A., Yepes, V., García-Segura, T., & Pellicer, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176, 521-534. doi:10.1016/j.jclepro.2017.12.140Valdebenito, M. A., & Schuëller, G. I. (2010). A survey on approaches for reliability-based optimization. Structural and Multidisciplinary Optimization, 42(5), 645-663. doi:10.1007/s00158-010-0518-6Doltsinis, I., & Kang, Z. (2004). Robust design of structures using optimization methods. Computer Methods in Applied Mechanics and Engineering, 193(23-26), 2221-2237. doi:10.1016/j.cma.2003.12.055Simpson, T. W., Booker, A. J., Ghosh, D., Giunta, A. A., Koch, P. N., & Yang, R.-J. (2004). Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Structural and Multidisciplinary Optimization, 27(5). doi:10.1007/s00158-004-0389-9Martínez-Frutos, J., & Martí, P. (2014). Diseño óptimo robusto utilizando modelos Kriging: aplicación al diseño óptimo robusto de estructuras articuladas. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(2), 97-105. doi:10.1016/j.rimni.2013.01.003Jin, R., Chen, W., & Simpson, T. W. (2001). Comparative studies of metamodelling techniques under multiple modelling criteria. Structural and Multidisciplinary Optimization, 23(1), 1-13. doi:10.1007/s00158-001-0160-4Marti-Vargas, J. R., Ferri, F. J., & Yepes, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Computers and Concrete, 12(2), 187-209. doi:10.12989/cac.2013.12.2.187Salehi, H., & Burgueño, R. (2018). Emerging artificial intelligence methods in structural engineering. Engineering Structures, 171, 170-189. doi:10.1016/j.engstruct.2018.05.084Jin, R., Du, X., & Chen, W. (2003). The use of metamodeling techniques for optimization under uncertainty. Structural and Multidisciplinary Optimization, 25(2), 99-116. doi:10.1007/s00158-002-0277-0Penadés-Plà, V., García-Segura, T., & Yepes, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179, 556-565. doi:10.1016/j.engstruct.2018.11.015Chuang, C. H., Yang, R. J., Li, G., Mallela, K., & Pothuraju, P. (2007). Multidisciplinary design optimization on vehicle tailor rolled blank design. Structural and Multidisciplinary Optimization, 35(6), 551-560. doi:10.1007/s00158-007-0152-0Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246-1266. doi:10.2113/gsecongeo.58.8.1246Simpson, T. W., Mauery, T. M., Korte, J. J., & Mistree, F. (2001). Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization. AIAA Journal, 39(12), 2233-2241. doi:10.2514/2.1234Forrester, A. I. J., & Keane, A. J. (2009). Recent advances in surrogate-based optimization. Progress in Aerospace Sciences, 45(1-3), 50-79. doi:10.1016/j.paerosci.2008.11.001Simpson, T. W., Poplinski, J. D., Koch, P. N., & Allen, J. K. (2001). Metamodels for Computer-based Engineering Design: Survey and recommendations. Engineering with Computers, 17(2), 129-150. doi:10.1007/pl00007198Camp, C. V., & Huq, F. (2013). CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Engineering Structures, 48, 363-372. doi:10.1016/j.engstruct.2012.09.004Martí, J. V., Gonzalez-Vidosa, F., Yepes, V., & Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342-352. doi:10.1016/j.engstruct.2012.09.014Medina, J. R. (2001). Estimation of Incident and Reflected Waves Using Simulated Annealing. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(4), 213-221. doi:10.1061/(asce)0733-950x(2001)127:4(213
- …