37 research outputs found

    Fluctuations in 2D reversibly-damped turbulence

    Full text link
    Gallavotti proposed an equivalence principle in hydrodynamics, which states that forced-damped fluids can be equally well represented by means of the Navier-Stokes equations and by means of time reversible dynamical systems called GNS. In the GNS systems, the usual viscosity is replaced by a state-dependent dissipation term which fixes one global quantity. The principle states that the mean values of properly chosen observables are the same for both representations of the fluid. In the same paper, the chaotic hypothesis of Gallavotti and Cohen is applied to hydrodynamics, leading to the conjecture that entropy fluctuations in the GNS system verify a relation first observed in nonequilibrium molecular dynamics. We tested these ideas in the case of two-dimensional fluids. We examined the fluctuations of global quadratic quantities in the statistically stationary state of a) the Navier-Stokes equations; b) the GNS equations. Our results are consistent with the validity of the fluctuation relation, and of the equivalence principle, indicating possible extensions thereof. Moreover, in these results the difference between the Gallavotti-Cohen fluctuation theorem and the Evans-Searles identity is evident.Comment: latex-2e, 14 pages, 6 figures, submitted to Nonlinearity. Revised version following the referees' comments: text polished, a few algebraic mistakes corrected, figures improved, reference to the Evans-Searles identity adde

    Vesicle dynamics in elongation flow: Wrinkling instability and bud formation

    Full text link
    We present experimental results on the relaxation dynamics of vesicles subjected to a time-dependent elongation flow. We observed and characterized a new instability, which results in the formation of higher order modes of the vesicle shape (wrinkles), after a switch in the direction of the gradient of the velocity. This surprising generation of membrane wrinkles can be explained by the appearance of a negative surface tension during the vesicle deflation, due to compression in a sign-switching transient. Moreover, the formation of buds in the vesicle membrane has been observed in the vicinity of the dynamical transition point.Comment: 4 pages, 4 figure

    Wettability Stabilizes Fluid Invasion into Porous Media via Nonlocal, Cooperative Pore Filling

    Get PDF
    We study the impact of the wetting properties on the immiscible displacement of a viscous fluid in disordered porous media. We present a novel pore-scale model that captures wettability and dynamic effects, including the spatiotemporal nonlocality associated with interface readjustments. Our simulations show that increasing the wettability of the invading fluid (the contact angle) promotes cooperative pore filling that stabilizes the invasion, and that this effect is suppressed as the flow rate increases, due to viscous instabilities. We use scaling analysis to derive two dimensionless numbers that predict the mode of displacement. By elucidating the underlying mechanisms, we explain classical yet intriguing experimental observations. These insights could be used to improve technologies such as hydraulic fracturing, CO2_{2} geo-sequestration, and microfluidics.Comment: In review, Physics Review Letter

    Dynamics of Vesicles in shear and rotational flows: Modal Dynamics and Phase Diagram

    Full text link
    Despite the recent upsurge of theoretical reduced models for vesicle shape dynamics, comparisons with experiments have not been accomplished. We review the implications of some of the recently proposed models for vesicle dynamics, especially the Tumbling-Trembling domain regions of the phase plane and show that they all fail to capture the essential behavior of real vesicles for excess areas, \Delta, greater than 0.4. We emphasize new observations of shape harmonics and the role of thermal fluctuations.Comment: (removed forgotten leftover figure files

    Cellular Automaton for Realistic Modelling of Landslides

    Get PDF
    A numerical model is developed for the simulation of debris flow in landslides over a complex three dimensional topography. The model is based on a lattice, in which debris can be transferred among nearest neighbors according to established empirical relationships for granular flows. The model is then validated by comparing a simulation with reported field data. Our model is in fact a realistic elaboration of simpler ``sandpile automata'', which have in recent years been studied as supposedly paradigmatic of ``self-organized criticality''. Statistics and scaling properties of the simulation are examined, and show that the model has an intermittent behavior.Comment: Revised version (gramatical and writing style cleanup mainly). Accepted for publication by Nonlinear Processes in Geophysics. 16 pages, 98Kb uuencoded compressed dvi file (that's the way life is easiest). Big (6Mb) postscript figures available upon request from [email protected] / [email protected]

    The Interplay Between Pore‐Scale Heterogeneity, Surface Roughness, and Wettability Controls Trapping in Two‐Phase Fluid Displacement in Porous Media

    Get PDF
    Predicting the compactness of the invasion front and the amount of trapped fluid left behind is of crucial importance to applications ranging from microfluidics and fuel cells to subsurface storage of carbon and hydrogen. We examine the interplay of wettability, macro‐ and pore scale heterogeneity (pore angularity and pore wall roughness), and its influence on flow patterns formation and trapping efficiency in porous media by a combination of 3D micro‐CT imaging with 2D direct visualization of micromodels. We observe various phase transitions between the following capillary flow regimes (phases): (a) compact advance, (b) wetting and drainage Invasion percolation, (c) Ordinary percolation

    A New Phase Diagram for Fluid Invasion Patterns as a Function of Pore‐Scale Heterogeneity, Surface Roughness, and Wettability

    Get PDF
    Understanding how different flow patterns emerge at various macro‐ and pore scale heterogeneity,pore wettability and surface roughness is remains a long standing scientific challenge. Such understandingallows to predict the amount of trapped fluid left behind, of crucial importance to applications ranging frommicrofluidics and fuel cells to subsurface storage of carbon and hydrogen. We examine the interplay ofwettability and pore‐scale heterogeneity including both pore angularity and roughness, by a combination ofmicro‐CT imaging of 3D grain packs with direct visualization of 2D micromodels. The micromodels aredesigned to retain the key morphological and topological properties derived from the micro‐CT images.Different manufacturing techniques allow us to control pore surface roughness. We study the competitionbetween flow through the pore centers and flow along rough pore walls and corners in media of increasingcomplexity in the capillary flow regime. The resulting flow patterns and their trapping efficiency are in excellentagreement with previous Ό‐CT results. We observe different phase transitions between the following flowregimes (phases): (a) Frontal/compact advance, (b) wetting and drainage Invasion percolation, and (c) Ordinarypercolation. We present a heterogeneity‐wettability‐roughness phase diagram that predicts these regimes

    Elastic turbulence in von Karman swirling flow between two disks

    Full text link
    We discuss the role of elastic stress in the statistical properties of elastic turbulence, realized by the flow of a polymer solution between two disks. The dynamics of the elastic stress are analogous to those of a small scale fast dynamo in magnetohydrodynamics, and to those of the turbulent advection of a passive scalar in the Batchelor regime. Both systems are theoretically studied in literature, and this analogy is exploited to explain the statistical properties, the flow structure, and the scaling observed experimentally. Several features of elastic turbulence are confirmed experimentally and presented in this paper: (i) saturation of the rms of the vorticity and of velocity gradients in the bulk, leading to the saturation of the elastic stress; (ii) large rms of the velocity gradients in the boundary layer, linearly growth with Wi; (iii) skewed PDFs of the injected power, with exponential tails, which indicate intermittency; PDF of the acceleration exhibit well-pronounced exponential tails too; (iv) a new length scale, i.e the thickness of the boundary layer, as measured from the profile of the rms of the velocity gradient, is found to be relevant and much smaller than the vessel size; (v) the scaling of the structure functions of the vorticity, velocity gradients, and injected power is found to be the same as that of a passive scalar advected by an elastic turbulent velocity field.Comment: submitted to Physics of Fluids; 31 pages, 29 figures (resolution reduced to screen quality

    Chaotic flow and efficient mixing in a micro-channel with a polymer solution

    Full text link
    Microscopic flows are almost universally linear, laminar and stationary because Reynolds number, ReRe, is usually very small. That impedes mixing in micro-fluidic devices, which sometimes limits their performance. Here we show that truly chaotic flow can be generated in a smooth micro-channel of a uniform width at arbitrarily low ReRe, if a small amount of flexible polymers is added to the working liquid. The chaotic flow regime is characterized by randomly fluctuating three-dimensional velocity field and significant growth of the flow resistance. Although the size of the polymer molecules extended in the flow may become comparable with the micro-channel width, the flow behavior is fully compatible with that in a table-top channel in the regime of elastic turbulence. The chaotic flow leads to quite efficient mixing, which is almost diffusion independent. For macromolecules, mixing time in this microscopic flow can be three to four orders of magnitude shorter than due to molecular diffusion.Comment: 8 pages,7 figure
    corecore