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1.  Introduction
Understanding the complex patterns formed through the displacement of one fluid by another in porous mate-
rials is a fascinating scientific problem, which is also central to a wide range of natural and engineering appli-
cations across scales, from sub-mm microfluidics to km-scale water and energy resources. The displacement 
patterns vary widely from compact front advancing uniformly to highly ramified where invasion advances along 
preferential flow paths (fingers) (Juanes et  al.,  2020; Lenormand et  al.,  1988). Classifying the flow patterns 
in  phase diagrams is one of the challenge in recent multi-phase flow research (Ben-Noah et al., 2023; Primkulov 
et  al.,  2021). Intensive research has investigated how the intricate interactions between the properties of the 
fluids, the solid pore surfaces, and the microstructure—the grain and pore geometry and their topology, affect 
the resulting patterns, displacement and trapping efficiency. In particular, experimental and numerical studies 
presented conflicting evidences of how wettability affects trapping efficiency in capillary flows (Chaudhary 
et al., 2013; Herring et al., 2016; Hu et al., 2017; Iglauer et al., 2012; Jung et al., 2016; Rahman et al., 2016; Singh 
et al., 2017; Trojer et al., 2015). A possible reason is the neglect of surface roughness: media with similar topo-
logical properties (e.g., Minkowski functionals) yet different surface roughness exhibit a significant difference in 
capillary trapping, as shown by micro-CT imaging (Geistlinger et al., 2015).

Earlier works, for example, (Blunt, 2017; Lenormand & Zarcone, 1984) that considered the effect of thick-film 
flow (TFF) and corner flow (CF), assumed that the pore space can be described by a straight, continuous capillary 
with angular rough cross section and assumed the existence of a connected, continuous film network, respec-
tively, that is, high connectivity of small throats such that (a) unilateral films can reach the other side of the throat 
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and hydrogen. We examine the interplay of wettability, macro- and pore scale heterogeneity (pore angularity 
and pore wall roughness), and its influence on flow patterns formation and trapping efficiency in porous media 
by a combination of 3D micro-CT imaging with 2D direct visualization of micromodels. We observe various 
phase transitions between the following capillary flow regimes (phases): (a) compact advance, (b) wetting and 
drainage Invasion percolation, (c) Ordinary percolation.
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observe various phase transitions between the following flow regimes (phases): (a) frontal/compact advance, 
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(geometric snap-off condition, Golmohammadi et al., 2021; Zhao et al., 2016) and that (b) precursor films can 
extend over larger areas of the porous medium such that trapping can occur. However, rough surfaces of sand-
stones (Figure 2.7 in Blunt (2017)) or glass ceramics (Geistlinger et al., 2015) exhibit a disordered micro-porous 
structure of interrupted grooves and crevices along the inner pore walls, that could void these assumptions.

In this letter we examine how the microscopic pore invasion mechanisms and heterogeneity and macroscopic 
patterns are affected by the interplay of surface roughness, as well as pore angularity, with wettability. We use 
micromodels of novel design that preserves the main topological and geometrical features of 3D geological media 
obtained from micro-CT imaging. For smooth pore wall surfaces, and uniform pore structures, for example, 
glass beads, we find that trapping decreases with contact angle (from imbibition to drainage). Increasing the 
pore-scale heterogeneity, for example, the pore angularity, we find a nonmonotonic dependence of trapping on 
wettability: maximal trapping in imbibition, decreasing to a minimum at neutral wettability and increasing again 
in drainage. This corresponds to a phase transition from wetting Invasion Percolation (IP) to drainage IP, with 
about the same trapping efficiency. Rough wetting pore walls doubles the trapping efficiency comparing identical 
pore structures. We show that this is due to a change in invasion mechanisms: spontaneous TFF followed by CF 
in imbibition along the rough pore surfaces provides an efficient snap-off-trapping mechanism. In drainage, the 
mechanism is “bypass trapping” where fingers close around and isolate clusters of wetting fluid caused by core 
annular flow. We also show that trapping is enhanced in 2D, due to the limited connectivity versus 3D. Trapped 
cluster sizes in both 2D and 3D exhibit universal scaling. We classify our experimental results using a new phase 
diagram proposed theoretically by Blunt (2017) (see Figure 1). As in the classical phase diagram of Lenormand 
et al. (1988), we show the experimental flow patterns of each phase in each quadrant of the phase diagram and 
derive the phase boundaries; W ≈ 1 or W → ∞, by applying the percolation laws. A detailed discussion is given 
in Supporting Information S1.

We use time-lapse imaging of 2D micromodels, providing the high spatio-temporal resolution required for 
observe TFF (typical thickness of ∼10 μm). The micromodels were designed to retain the characteristic geomet-
ric, morphological, and topological properties of geologically representative media, derived from 3D micro-CT 
images. We note that the micro-CT images are of limited spatial (15 μm) and temporal resolution (slow acqui-
sition), not allowing to capture the dynamics of sub-pore scale flows. Two complementary methods were used 
in the design: (a) direct geometrical mapping which stitch together replicated cross sections (in flow direction) 
of  the 3D pore structures; and (b) global optimization algorithm with topological operations that produce the pore 
size distribution and connectivity of 3D sand (Bruecher & Bottlinger, 2006; Geistlinger & Mohammadian, 2015; 
Schlüter et al., 2010). The resulting micromodel dimension are 20 × 80 × 0.1 × 80 × 0.3 mm, respectively. For 
details of the micromodel generation and resulting grain and pore size distribution see Supporting Information S1.

State-of-the-art manufacturing provides the desired pore geometry at high precision. Identical microstructures 
apart from wall smoothness were produced by two etching techniques: (a) interval-based ICP-DRIE technology 
was used for anisotropic etching of silicon wafer, providing extremely smooth surfaces (Figure S3 in Supporting 
Information S1) (Küchler et al., 2003; Zuo et al., 2013); and (b) high-precision anisotropic photolithographic 
etching of photosensitive glass-ceramic FOTURAN (Schott-GmbH), with rough walls (Geistlinger et al., 2019; 
Golmohammadi et al., 2021). Both microstructures were covered with a plain PYREX-glass plate by thermal 
diffusion bonding (see Supporting Information S1).

The contact angle was varied from imbibition (small) to strong drainage (very large), by using different fluid-fluid 
pairs: (a) water-air with θ = 38°; (b) glycerin-air, 56°; (c) heptane-water, 138°; and (d) air-water, 142°. When air 
was used as invading fluid, Ca was calculated using the viscosity of the other, more viscous defending fluid. The 
contact angles are mean values of both materials, PYREX and Si; for the full physico-chemical fluid properties 
see Supporting Information S1. To minimize gravitational and viscous effects, the flow was horizontal and at 
constant flow rate (low capillary numbers, Ca = 10 −6), using syringe pump (Fusion 200, Chemyx, USA). Time 
lapse images were acquired in a fluorescence microscope in combination with a SLR camera (Canon EOS 5D, 
100 mm Macro lens, Uranin and Oil Red dyes) and analyzed using Fiji/ImageJ (Schindelin et al., 2012).

First, we examine the effect of microscopic heterogeneity on trapping in 3D packing of glass beads and sand 
grains, of smooth and rough pore surfaces, respectively. For 3D bead pack, slow imbibition occurs by “fron-
tal” advancement (FA) that is, a compact front due to cooperative filling, as observed in our micro-CT experi-
ments (see Figure 1 and Geistlinger & Zulfiqar, 2020). Trapping of the defending, non-wetting fluid is negligible 
because it is well connected throughout the sample in 3D (Adler & Brenner, 1988; Wilkinson, 1984). Within 
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a narrow contact angle range (here θ = 90–100°, with critical value θc = 96°), trapping efficiency S* = Sres/
Snorm (residual saturation Sres normalized by Snorm = 13%) changes drastically from zero to maximal trapping 
(Figure 2a). This transition, also denoted as the “Cieplak-Robbins (CR) transition” (Cieplak & Robbins, 1988), 
is characterized by a substantial, qualitative (“phase”) change. For θ > θc the displacement occurs by IP. Finger 
width W decreases from FA to IP, where W ∼ 1 determines the critical contact angle (Figure 1; in agreement with 
(Cieplak & Robbins, 1988)). The number of large trapped clusters exhibits universal scaling (Wilkinson, 1984): 
n(s) ∼ s τ, where s is the numbers of pores, with universal scaling exponent of τ = 2.19 in 3D (Geistlinger & 
Zulfiqar, 2020).

In 3D sand packings with similar topology (similar Minkowski functions, Geistlinger et al., 2015) to our glass 
bead packings, we observe IP displacement in drainage with similar trapping (θ > 100° in Figure 2a). In contrast, 

Figure 1.  A phase diagram showing within the white area, where no layer flow is allowed (smooth surface), two different 
flow regimes: (a) frontal advance (“compact”) and (c) drainage Invasion Percolation (dIP). For higher heterogeneity/
disorder and rougher surface (2D sand) a third flow regime is observed: Ordinary Percolation (b, gray area). The transition in 
displacement regimes is quantified by the finger width, W.

Figure 2.  Non-monotonous contact angle dependency (red lines) of the normalized trapped saturation of the defending fluid 
S*, in both 3D micro-CT images (a; normalized by Snorm = 13%) and 2D micromodel experiments (b; Snorm = 73%). Glass 
beads data in both 2D and 3D (circles) was fitted to an error function, indicating the CR transition from frontal advance to 
Invasion Percolation. In 3D sand and 2D sand-analogs (rough surface), the more efficient snap-off trapping is caused by 
spontaneous thick-film water flow during imbibition. Reduced phase connectivity in 2D enhanced trapping, for example, 
minimum value increases from zero in 3D to ∼0.2. Increased grain angularity also increases trapping; for example, compare 
2D smooth micromodel analogs of sand versus glass beads (b).
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in strong imbibition in the 3D sand (hydrophilic grains), trapping attains a maximum which is about twice as high 
as in drainage, and the pattern is of ordinary percolation with trapping (Figure 1).

We hypothesize that the observed high trapping efficiency in sands is due to efficient snap-off trapping resulting 
from TFF and CF along the rough pore walls. A partial support for this hypothesis is provided by micro-CT 
images, showing that in imbibition a thick water films cover the sand grains and suggesting that the trapped air 
clusters are completely surrounded by a closed spherical interface, versus partial cover by convex interface in 
drainage (see Supporting Information S1). To test this hypothesis, we visualize the displacement in the 2D micro-
models which replicate the 3D packings topology. The “2D glass beads” micromodel exhibits a similar phase 
transition as its 3D counterpart from compact or frontal advance (FA) to drainage invasion percolation (dIP) 
fractal pattern (Figures 3a–3c, Figure 1), with increased trapping efficiency from minimal to maximal trapping 
(Figure 2b). We note a few quantitative differences: in 2D, the range of contact angles where the transition occurs 
is larger, where the phase boundaries are θc1 ∼ 40° and θc2 ∼ 85° (Figure 2). Also, as 2D limits connectivity of 
defending phase, trapping is enhanced: 0.06–0.13 for θ = 38–56°. The dependence of trapping upon the contact 
angle for round smooth grains (e.g., glass beads, not accounting for TFF and CF), namely the CR transition, was 
computed using a pore network model in (Cieplak & Robbins, 1990; Holtzman & Segre, 2015; Zhao et al., 2019) 
(see Figure S5 in Supporting Information S1).

In contrast to idealized media made of circular posts with smooth surfaces (i.e., 2D cross-section of the glass 
beads pack), the 2D micromodels representing sand and sandstone show ramified, fractal displacement fronts of 
wetting IP (Figure 3 panels d–f and g–i). This leads similar as for drainage IP to maximal trapping. The trapping 
efficiency shows a similar non-monotonic behavior as 3D sand, with maximums of ∼40% at imbibition (θ = 38°) 
and drainage (140°), cf. Figure 2b. Another qualitative difference is that the minimal trapping efficiency is ∼20%, 
versus zero in 3D, due to the decreased phase connectivity in 2D. It is interesting to compare with a previous clas-
sification of patterns in smooth-surface media (excluding TFF), where the same transition from FA to wIP occurs 
with increasing heterogeneity/disorder (Figure 4.20 in Blunt (2017)). Increasing the contact angle from 38° to 56° 
leads to a dramatic change in the trapping behavior from snap-off to bypass trapping, with a drop in efficiency 
of ∼50% (Figure 2b). A further increase of the contact angle to 140° (strong drainage) enhances trapping again. 
While the macroscopic displacement regime remains similar—IP (similar to that predicted ignoring TFF, e.g., 
cf. Figure 4.20 in Blunt (2017)), the microscopic mechanism underlying trapping changes from by-pass by core 
annular flow (smooth walls) to snap-off (rough walls), see Movie S1.

Figure 3.  Macroscopic displacement patterns and trapping efficiency (residual saturation, in %) at breakthrough as function 
of wettability for micromodels of increasing degrees of pore space heterogeneity: rows 1–3 are 2D cross sections from 
glass bead packs, sand and sandstone, respectively. The invading fluid is colored, defending fluid and solid matrix not 
shown (white). The imbibition patterns (first column) show that with increasing pore space heterogeneity a transition from 
frontal advance to wetting (w)IP takes place. For neutral contact angles (second column) all porous media show compact 
displacement and less trapping (transition range in Figure 1) compared to that of drainage (d)IP (last column).
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The dynamics of the front advance and the bypass trapping are controlled by precursor CF with unstable 
grain-grain bridging (snap-off events) and subsequent duct flow (Figure 4a; also Movie S1). The more efficient 
snap-off trapping leads to maximum trapping efficiency during imbibition. Comparison of smooth-walled 2D 
micromodel analogs of glass beads and sand shows enhanced trapping due to pore irregularity.

Next, we address the following question: why for rough-walled 3D sand trapping is twice as high at strong imbi-
bition that at strong drainage (Figure 2)? Based on Wenzel's argument that surface roughness enhances intrinsic 
wettability (Blunt, 2017; Wenzel, 1936), that is, hydrophilicity and also hydrophobicity are both enhanced, we 
hypothesize that the different wetting behavior on rough surfaces causes this different trapping behavior.

To test this, we compare experiments with 2D sand analogs micromodels of identical microstructure besides 
surface roughness. Indeed, the residual saturation in the micromodel with rough surfaces (0.73) is twofold than 
with smooth surfaces (0.34), see Figure 2b. The enhanced trapping is due to spontaneous precursor/prewetting 
flow of the invading fluid (here, water) on the rough siliceous surface, where TFF followed by CF, which is fed 
by TFF (vs. by duct flow in smooth surfaces), see Movie S1. However, this observation of complete wetting is 
surprising given the ceramic's surface intrinsic contact angle of 38°, which is expected to yield partial wetting. 
This can be explained by an energy argument: the change of free energy dF for a small film advance dx on a 
rough surface yields dF < 0 for contact angles smaller than θc = arccos(1/r), where the roughness r is the ratio 
of rough to flat surface. For a typical glass ceramic roughness of 1.5 (roughness parameters δ = 1 μm, λ = 2 μm, 
Golmohammadi et al., 2021), the critical contact angle for complete wetting is 56°; thus, for the intrinsic angle 
of 38°, the condition for complete wetting is satisfied. These observations demonstrate that invasion dynamics on 
rough surfaces are controlled by the temporal sequence of TFF and CF, where trapping by snap-offs occurring at 
random positions (due to the randomness of the throat geometry) results in a macroscopic OP behavior, whereas 
core annular flow leading to bypass trapping results in IP.

Our experimental data also allows us to confirm an important theoretical result: the universality of the cluster 
size. Since the approach to the percolation threshold is universal, it depends only on the spatial dimension, 
and not on the network structure (Blunt & Scher,  1995; Geistlinger et  al.,  2019; Stauffer & Aharony,  1994; 
Wilkinson, 1984). At the percolation threshold pc (“terminal point”) where the nonwetting fluid becomes discon-
nected (Blunt & Scher, 1995) and for large cluster sizes s, the cluster size distribution is expected to follow a 
power law decay with the Fisher exponent τ2D = 2.05 (Fisher, 1967; Stauffer & Aharony, 1994):

𝑃𝑃𝑃𝑃𝑃𝑃 (𝑠𝑠𝑠 𝑠𝑠𝑐𝑐) = 𝑛𝑛(𝑠𝑠) = 𝑠𝑠−𝜏𝜏 , 𝑠𝑠 𝑠 1.� (1)

The complementary cumulative probability is

𝑃𝑃 (𝑠𝑠) = 𝐶𝐶𝐶𝐶𝐶𝐶 (𝑠𝑠max) − 𝐶𝐶𝐶𝐶𝐶𝐶 (𝑠𝑠)) = 𝑎𝑎 ⋅ 𝑠𝑠−𝑏𝑏(1 − 𝛿𝛿),� (2)

Figure 4.  Microscopic wetting mechanisms captured with fluorescent microscope imaging: (a) Precursor corner flows 
(green rings around the front grains) in 2D sand with smooth surface in imbibition (θ = 38°, see Figure 3e). Bright pores are 
completely filled by duct flow or by grain-grain bridging (snap-offs); (b–c) Spontaneous thick-film flow at subsequent times 
(marked t1 and t2) in 2D sand analogs made of glass ceramics (rough surfaces). In all panels, water displaces air from left to 
right.
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where CDF(s) is the cumulative probability, b = τ − 1 = 1.05, and smax the maximal cluster size. For infinite 
cluster size, smax → ∞, the residual function δ ≃ s/smax vanishes, and log(P(s)) shows a linear decrease with log(s):

log(𝑃𝑃 (𝑠𝑠)) = 𝑎̃𝑎 − 𝑏𝑏 ⋅ log(𝑠𝑠) −
𝑠𝑠

𝑠𝑠max

, 𝑠𝑠 𝑠 𝑠𝑠max� (3)

where it was assumed that δ is a small quantity, such that log(1 − δ) ≃ −δ. Our data from imbibition in the 2D 
sand analog micromodels for both smooth and rough pore surface is in agreement with the above theory, showing 
the cluster size distribution follows a power law with a critical exponent 2.05 (Figure 5; 2.19 in 3D). We note 
that the linear behavior that is, the universal power law only holds for cluster sizes large enough to be near the 
percolation threshold and small enough to exclude finite size effects. Our data shows the deviation from the 
linear trend for large clusters, that is, finite smax (in agreement with experiments with sandstones, cf. Figure 4.30 
in Blunt (2017)).

In conclusion, the presented experiments expose the microscopic mechanisms controlling trapping and hence 
the macroscopic displacement patterns. We show that in media with more homogeneous microstructure—
round pores with smooth walls (here glass beads)—in both 2D and 3D, compact (frontal) advance with mini-
mal trapping occurs in imbibition due to complete pore filling (duct flow). Increasing the contact angle causes 
a phase transition to IP regime, with increased trapping caused by invading fluid fingers bypassing pockets 
of the defending fluid. Increasing microscopic heterogeneity—pore angularity and wall roughness (sands and 
sandstone)—increases trapping, however by different mechanisms depending on roughness. For rough surfaced 
media, spontaneous TFF followed by CF leads to snap-off events with maximum trapping efficiency during imbi-
bition, resulting in OP with trapping displacement regime. Trapping depends non-monotonically on wettability: 
increasing contact angle decreases trapping to a minimum at neutral wettability, which then increases again at 
strong drainage, where the mechanism is core annular flow leads to trapping by fingering (bypass trapping). The 
enhanced connectivity of 3D media was shown to dramatically decrease trapping. For both smooth and rough 
surfaces, our measured trapped cluster sizes exhibit universal scaling in both 2D and 3D, in agreement with 
theory.

We note that Singh et al. (Singh et al., 2019) discussed also the impact of heterogeneity on fluid displacement and 
trapping: …“Layer flow and snap-off are both expected to become more important with increasing heterogeneity 
of the pore space and are thus essential to understand fluid invasion into natural porous media.”….

Finally, we note that this study considers homogenous wetting properties, and slow-enough capillary flows 
such that contact angle dynamics is negligible. We hypothesize that the conclusions drawn here would still hold 
true qualitatively for more complicated scenarios, because the competition between annular flow (through pore 
centers) and along crevices and corners is still expected to control trapping. It would be interesting to extend 
this study to consider faster flows as well as mixed- or fractional-wet media. The latter are abundant in natural 
geologic media due to their heterogeneous mineral composition (Geistlinger et al., 2020).

Figure 5.  Universal scaling observed from the complementary cumulative probability function (CDF) versus cluster size for 
2D sand analog micromodels with (a) rough and (b) smooth surface. For clusters larger than the critical size (first red arrow) 
the size distribution follows a power law with a critical exponent τ = 2.05 (slope of the red line is τ − 1). Second red arrow 
marks data where finite size effects become significant.

 19448007, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
106197 by T

est, W
iley O

nline L
ibrary on [17/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

GEISTLINGER ET AL.

10.1029/2023GL106197

7 of 8

Data Availability Statement
Grain size and pore size data of 2D and 3D porous media and the physico-chemical fluid properties are avail-
able at the Figshare data repository (Geistlinger et  al.,  2023). Other micromodel data are available through 
(Golmohammadi et al., 2021) and CT-data through (Zulfiqar et al., 2020).
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