163 research outputs found

    Living Our Lives With Uncertainty

    Get PDF
    This is a look into how my life was during the Covid-19 pandemic. I think it is crazy how I am living through history and I want future generations to know how my life was during this pandemic. I hope that when people read my contribution to remember Covid-19 that they get a feel for how everyone had to live through 2020. I am grateful for all of the health care workers and for everyone doing their part and wearing their masks and social distancing

    Palladium-Catalyzed Cross-couplings of Lithium Arylzincates with Aromatic Halides. Synthesis of Analogues of Isomeridianin G and Evaluation as GSK- 3 Inhibitors

    No full text
    International audienceSeveral analogues of Isomeridianin G have been synthesized using as a key step palladium-catalyzed crosscoupling reactions of lithium triorganozincates. The latter have been prepared by deprotonative lithiation followed by transmetalation using ZnCl2*TMEDA (1/3 equiv)

    Synthesis of Unsymmetrical Heterobiaryls Using palladium-catalyzed cross-coupling reactions of lithium organozincates

    No full text
    International audienceSeveral unsymmetrical heterobiaryls have been synthesized through palladium-catalyzed cross-coupling reactions of lithium triorganozincates. The latter have been prepared by deprotonative lithiation followed by transmetalation using non hygroscopic ZnCl2*TMEDA (1/3 equiv)

    A plasmonic gold nano-surface functionalized with the estrogen receptor for fast and highly sensitive detection of nanoplastics

    Get PDF
    : Nanoplastics are a global emerging environmental problem whose effects might pose potential threats to the human's health. Despite the relevance of the issue, fast, reliable and quantitative in situ analytical approaches to determine nanoplastics are not yet available. The aim of this work was to devise an optical sensor with the goal of direct detecting and quantifying nanoplastics in seawater without sample pre-treatments. To this purpose, a nano-plasmonic biosensor was developed by exploiting an Estrogen Receptor (ER) recognition element grafted onto a polymer-based gold nanograting (GNG) plasmonic platform. The ER-GNG biosensor required just minute sample volumes (2 ÎŒL), allowed rapid detection (3 min) and enabled to determine nanoplastics in simulated seawater with a linear dynamic concentrations range of 1-100 ng/mL, thus encompassing the expected environmental loads. The nanostructured grating (GNG) provided remarkable performance enhancements, extending the measurement range across five orders of magnitude, thanks to the both the SPR and the localized SPR phenomena occurring at the GNG chip. At last, the ER-GNG biosensor was tested on real seawater samples collected in the Naples area and the results (∌30 ng/mL) were verified by a conventional approach (filtration and evaporation), confirming the ER-GNG sensor offers a straightforward and highly sensitive method for the direct in-field nanoplastics monitoring

    Estradiol Detection for Aquaculture Exploiting Plasmonic Spoon-Shaped Biosensors

    Get PDF
    In this work, a surface plasmon resonance (SPR) biosensor based on a spoon-shaped waveguide combined with an estrogen receptor (ERα) was developed and characterized for the detection and the quantification of estradiol in real water samples. The fabrication process for realizing the SPR platform required a single step consisting of metal deposition on the surface of a polystyrene spoon-shaped waveguide featuring a built-in measuring cell. The biosensor was achieved by functionalizing the bowl sensitive surface with a specific estrogen receptor (ERα) that was able to bind the estradiol. In a first phase, the biosensor tests were performed in a phosphate buffer solution obtaining a limit of detection (LOD) equal to 0.1 pM. Then, in order to evaluate the biosensor’s response in different real matrices related to aquaculture, its performances were examined in seawater and freshwater. The experimental results support the possibility of using the ERα-based biosensor for the screening of estradiol in both matrices

    Deprotonative metalation of five-membered aromatic heterocycles using mixed lithium-zinc species

    No full text
    International audienceDeprotonation of benzoxazole, benzothiazole, benzo[b]thiophene, benzo[b]furan, N-Boc protected indole and pyrrole, and N-phenylpyrazole using an in situ mixture of ZnCl2*TMEDA (0.5 equiv) and lithium 2,2,6,6-tetramethylpiperidide (1.5 equiv) in THF at room temperature was described. The reaction was evidenced by trapping with iodine, regioselectively giving the expected functionalized derivatives in 52 to 73% yields. A mixture of mono- and disubstituted derivatives was obtained starting from thiazole. Cross-coupling reactions of 2-metalated benzo[b]thiophene and benzo[b]furan with heteroaromatic chlorides proved possible under palladium catalysis. A reaction pathway where the lithium amide and zinc diamide present in solution behave synergically was proposed for the deprotonation reaction, taking account of NMR and DFT studies carried out on the basic mixture

    Soft molecularly imprinted nanoparticles with simultaneous lossy mode and surface plasmon multi-resonances for femtomolar sensing of serum transferrin protein

    Get PDF
    : The simultaneous interrogation of both lossy mode (LMR) and surface plasmon (SPR) resonances was herein exploited for the first time to devise a sensor in combination with soft molecularly imprinting of nanoparticles (nanoMIPs), specifically entailed of the selectivity towards the protein biomarker human serum transferrin (HTR). Two distinct metal-oxide bilayers, i.e. TiO2-ZrO2 and ZrO2-TiO2, were used in the SPR-LMR sensing platforms. The responses to binding of the target protein HTR of both sensing configurations (TiO2-ZrO2-Au-nanoMIPs, ZrO2-TiO2-Au-nanoMIPs) showed femtomolar HTR detection, LODs of tens of fM and KDapp ~ 30 fM. Selectivity for HTR was demonstrated. The SPR interrogation was more efficient for the ZrO2-TiO2-Au-nanoMIPs configuration (sensitivity at low concentrations, S = 0.108 nm/fM) than for the TiO2-ZrO2-Au-nanoMIPs one (S = 0.061 nm/fM); while LMR was more efficient for TiO2-ZrO2-Au-nanoMIPs (S = 0.396 nm/fM) than for ZrO2-TiO2-Au-nanoMIPs (S = 0.177 nm/fM). The simultaneous resonance monitoring is advantageous for point of care determinations, both in terms of measurement's redundancy, that enables the cross-control of the measure and the optimization of the detection, by exploiting the individual characteristics of each resonance

    Spearmint (\u3cem\u3el\u3c/em\u3e-carvone) Oil and Wintergreen (methyl salicylate) Oil Emulsion is an Effective Immersion Anesthetic of Fishes

    Get PDF
    This study evaluates the effects of a spearmint (/-carvone) and wintergreen oil (methyl salicylate) emulsion (CMSE) on age 1 landlocked Atlantic salmon Salmo salar sebago (hereafter salmon). Salmon were immersed in either 257 ”l/L CMSE or 75 mg/L tricaine methanesulfonate (MS-222) to induce anesthesia (stage 4), useful for emersion and noninvasive husbandry procedures, and then salmon were recovered in fresh water. Induction was quicker in the CMSE group; however, recovery was quicker in the MS-222 group. A second experiment was conducted in which salmon were immersed in 257 ”l/L CMSE for 8.5 min, or 75 mg/L MS-222 for 8.5 min in order to compare electrocardiographs during deeper anesthesia (stage 5) between salmon continuously immersed in CMSE to those continuously immersed in MS-222. Because salmon remained sedated longer after CMSE exposure than after MS-222 exposure, a third group of salmon was immersed in 257 ”l/L CMSE for just 2.5 min before undergoing the 6-min electrocardiograph procedure. Anesthesia induction rates, recovery rates, and electrocardiographs of salmon anesthetized with CMSE were comparable to salmon anesthetized with MS-222. Salmon anesthetized with CMSE and then transferred immediately to fresh water had more stable heart rates than salmon anesthetized with either MS-222 or CMSE continuously. Salmon bathed continuously in CMSE showed clinical signs of increasing anesthetic depth including decreasing heart rate, decreasing respiration rate and electrocardiograph abnormalities. The CMSE, with its mint and wintergreen concentrations less than in household products such as chewing gum, toothpaste, and mouthwash, is a potent, rapid-acting immersion fish anesthetic comparable to MS-222 for stages 4 and 5 anesthesia

    MAP6-F is a temperature sensor that directly binds to and protects microtubules from cold-induced depolymerization.: Microtubule stabilization by MAP6

    Get PDF
    International audienceMicrotubules are dynamic structures that present the peculiar characteristic to be ice-cold labile in vitro. In vivo, microtubules are protected from ice-cold induced depolymerization by the widely expressed MAP6/STOP family of proteins. However, the mechanism by which MAP6 stabilizes microtubules at 4 °C has not been identified. Moreover, the microtubule cold sensitivity and therefore the needs for microtubule stabilization in the wide range of temperatures between 4 and 37 °C are unknown. This is of importance as body temperatures of animals can drop during hibernation or torpor covering a large range of temperatures. Here, we show that in the absence of MAP6, microtubules in cells below 20 °C rapidly depolymerize in a temperature-dependent manner whereas they are stabilized in the presence of MAP6. We further show that in cells, MAP6-F binding to and stabilization of microtubules is temperature- dependent and very dynamic, suggesting a direct effect of the temperature on the formation of microtubule/MAP6 complex. We also demonstrate using purified proteins that MAP6-F binds directly to microtubules through its Mc domain. This binding is temperature-dependent and coincides with progressive conformational changes of the Mc domain as revealed by circular dichroism. Thus, MAP6 might serve as a temperature sensor adapting its conformation according to the temperature to maintain the cellular microtubule network in organisms exposed to temperature decrease

    A Plasmonic Biosensor Based on Light-Diffusing Fibers Functionalized with Molecularly Imprinted Nanoparticles for Ultralow Sensing of Proteins

    Get PDF
    Plasmonic bio/chemical sensing based on optical fibers combined with molecularly imprinted nanoparticles (nanoMIPs), which are polymeric receptors prepared by a template-assisted synthesis, has been demonstrated as a powerful method to attain ultra-low detection limits, particularly when exploiting soft nanoMIPs, which are known to deform upon analyte binding. This work presents the development of a surface plasmon resonance (SPR) sensor in silica light-diffusing fibers (LDFs) functionalized with a specific nanoMIP receptor, entailed for the recognition of the protein human serum transferrin (HTR). Despite their great versatility, to date only SPR-LFDs functionalized with antibodies have been reported. Here, the innovative combination of an SPR-LFD platform and nanoMIPs led to the development of a sensor with an ultra-low limit of detection (LOD), equal to about 4 fM, and selective for its target analyte HTR. It is worth noting that the SPR-LDF-nanoMIP sensor was mounted within a specially designed 3D-printed holder yielding a measurement cell suitable for a rapid and reliable setup, and easy for the scaling up of the measurements. Moreover, the fabrication process to realize the SPR platform is minimal, requiring only a metal deposition step
    • 

    corecore