26 research outputs found

    Timed restricted feeding restores the rhythms of expression of the clock protein, Period2, in the oval nucleus of the bed nucleus of the stria terminalis and central nucleus of the amygdala in adrenalectomized rats

    Get PDF
    Feeding schedules that limit food availability to a set time of day are powerful synchronizers of the rhythms of expression of the circadian clock protein Period 2 (PER2) in the limbic forebrain in rats. Little is known, however, about the mechanisms that mediate the effect of such timed restricted feeding (TRF) schedules on the expression of PER2. Adrenal glucocorticoids have been implicated in the circadian regulation of clock genes expression in peripheral tissues as well as in the control of the rhythms of expression of PER2 in certain limbic forebrain regions, such as the oval nucleus of the bed nucleus of the stria terminalis (BNSTov) and central nucleus of the amygdala (CEA) in rats. To study the possible involvement of glucocorticoids in the regulation of PER2 expression by TRF, we assessed the effect of adrenalectomy on TRF-entrained PER2 rhythms in the limbic forebrain in rats. Adrenalectomy selectively abolished the rhythms of PER2 in the BNSTov and CEA in normally fed rats, as previously shown, but had no effect on TRF-entrained PER2 rhythms in the same structures. These findings show that the effect of TRF on PER2 rhythms in the limbic forebrain is independent of adrenal glucocorticoids and demonstrate that the involvement of glucocorticoids in the regulation PER2 rhythms in the limbic forebrain is not only region specific, as previously shown, but also state dependent

    Brain glucocorticoid receptors are necessary for the rhythmic expression of the clock protein, PERIOD2, in the central extended amygdala in mice

    Get PDF
    The adrenal glucocorticoid, corticosterone, induces changes in gene expression in both neural and non-neural tissues. The rhythmic release of corticosterone has been shown in rats to be necessary for the rhythmic expression of the clock protein PERIOD2 (PER2) in select regions of the limbic forebrain. The mechanisms mediating the effects of glucocorticoids on changes in gene expression have been linked to the transcriptional activity of the low affinity glucocorticoid receptor, GR. We examined the patterns of PER2 expression in the brains of mice containing an inactivation of GR gene restricted to neural tissues (GR(NesCre) mice). We found that central deletion of the GR gene blunts the daily pattern of PER2 expression in the oval nucleus of the bed nucleus of the stria terminalis (BNSTov) and central nucleus of the amygdala (CEA) both of which make up the central extended amygdala, but not in the suprachiasmatic nucleus (SCN), basolateral amygdala (BLA) or dentate gyrus of the hippocampus (DG). These results implicate brain GR receptors in the regulation of PER2 expression in the BNSTov and CEA and are consistent with our previous findings that the rhythmic expression of PER2 in these areas is selectively sensitive to fluctuations in circulating corticosterone

    The expression of the clock protein PER2 in the limbic forebrain is modulated by the estrous cycle

    Get PDF
    Daily behavioral and physiological rhythms are linked to circadian oscillations of clock genes in the brain and periphery that are synchronized by the master clock in the suprachiasmatic nucleus. In addition, there are a number of inputs that can influence circadian oscillations in clock gene expression in a tissue-specific manner. Here we identify an influence on the circadian oscillation of the clock protein PER2, endogenous changes in ovarian steroids, within two nuclei of the limbic forebrain: the oval nucleus of the bed nucleus of the stria terminalis and central nucleus of the amygdala. We show that the daily rhythm of PER2 expression within these nuclei but not in the suprachiasmatic nucleus, dentate gyrus, or basolateral amygdala is blunted in the metestrus and diestrus phases of the estrus cycle. The blunting of the PER2 rhythm at these phases of the cycle is abolished by ovariectomy and restored by phasic estrogen replacement suggesting that fluctuations in estrogen levels or their sequelae are necessary to produce these effects. The finding that fluctuations in ovarian hormones have area-specific effects on clock gene expression in the brain introduces a new level of organizational complexity in the control of circadian rhythms of behavior and physiology

    Glucocorticoid rhythms control the rhythm of expression of the clock protein, Period2, in oval nucleus of the bed nucleus of the stria terminalis and central nucleus of the amygdala in rats

    Get PDF
    We investigated the involvement of the adrenal glucocorticoid, corticosterone, in the control of the rhythmic expression of the circadian clock protein, Period2, in forebrain nuclei known to be sensitive to glucocorticoids, stressors and drugs of abuse, the oval nucleus of the bed nucleus of the stria terminalis and the central nucleus of the amygdala. We found previously that the daily rhythm of Period2 in these nuclei is uniquely dependent on the integrity of the adrenal glands (Amir S, Lamont EW, Robinson B, Stewart J (2004) A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. J Neurosci 24:781-790; Lamont EW, Robinson B, Stewart J, Amir S (2005) The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc Natl Acad Sci U S A 102:4180-4184). We now show that, in rats, in the absence of the adrenals, corticosterone replacement via the drinking water, which is associated with daily fluctuations in corticosterone levels, restores the rhythm of Period2 in the oval nucleus of the bed nucleus of the stria terminalis and central nucleus of the amygdala. Corticosterone replacement via constant-release pellets has no effect. These results underscore the importance of circadian glucocorticoid signaling in Period2 rhythms in the oval nucleus of the bed nucleus of the stria terminalis and central nucleus of the amygdala and suggest a novel mechanism whereby stressors, drugs of abuse, and other abnormal states that affect the patterns of circulating glucocorticoids can alter the functional output of these nuclei

    Community Code Verification Exercise for Simulating Sequences of Earthquakes and Aseismic Slip (SEAS)

    Get PDF
    Numerical simulations of sequences of earthquakes and aseismic slip (SEAS) have made great progress over past decades to address important questions in earthquake physics. However, significant challenges in SEAS modeling remain in resolving multiscale interactions between earthquake nucleation, dynamic rupture, and aseismic slip, and understanding physical factors controlling observables such as seismicity and ground deformation. The increasing complexity of SEAS modeling calls for extensive efforts to verify codes and advance these simulations with rigor, reproducibility, and broadened impact. In 2018, we initiated a community code‐verification exercise for SEAS simulations, supported by the Southern California Earthquake Center. Here, we report the findings from our first two benchmark problems (BP1 and BP2), designed to verify different computational methods in solving a mathematically well‐defined, basic faulting problem. We consider a 2D antiplane problem, with a 1D planar vertical strike‐slip fault obeying rate‐and‐state friction, embedded in a 2D homogeneous, linear elastic half‐space. Sequences of quasi‐dynamic earthquakes with periodic occurrences (BP1) or bimodal sizes (BP2) and their interactions with aseismic slip are simulated. The comparison of results from 11 groups using different numerical methods show excellent agreements in long‐term and coseismic fault behavior. In BP1, we found that truncated domain boundaries influence interseismic stressing, earthquake recurrence, and coseismic rupture, and that model agreement is only achieved with sufficiently large domain sizes. In BP2, we found that complexity of fault behavior depends on how well physical length scales related to spontaneous nucleation and rupture propagation are resolved. Poor numerical resolution can result in artificial complexity, impacting simulation results that are of potential interest for characterizing seismic hazard such as earthquake size distributions, moment release, and recurrence times. These results inform the development of more advanced SEAS models, contributing to our further understanding of earthquake system dynamics

    Community Code Verification Exercise for Simulating Sequences of Earthquakes and Aseismic Slip (SEAS)

    Get PDF
    Numerical simulations of sequences of earthquakes and aseismic slip (SEAS) have made great progress over past decades to address important questions in earthquake physics. However, significant challenges in SEAS modeling remain in resolving multiscale interactions between earthquake nucleation, dynamic rupture, and aseismic slip, and understanding physical factors controlling observables such as seismicity and ground deformation. The increasing complexity of SEAS modeling calls for extensive efforts to verify codes and advance these simulations with rigor, reproducibility, and broadened impact. In 2018, we initiated a community code‐verification exercise for SEAS simulations, supported by the Southern California Earthquake Center. Here, we report the findings from our first two benchmark problems (BP1 and BP2), designed to verify different computational methods in solving a mathematically well‐defined, basic faulting problem. We consider a 2D antiplane problem, with a 1D planar vertical strike‐slip fault obeying rate‐and‐state friction, embedded in a 2D homogeneous, linear elastic half‐space. Sequences of quasi‐dynamic earthquakes with periodic occurrences (BP1) or bimodal sizes (BP2) and their interactions with aseismic slip are simulated. The comparison of results from 11 groups using different numerical methods show excellent agreements in long‐term and coseismic fault behavior. In BP1, we found that truncated domain boundaries influence interseismic stressing, earthquake recurrence, and coseismic rupture, and that model agreement is only achieved with sufficiently large domain sizes. In BP2, we found that complexity of fault behavior depends on how well physical length scales related to spontaneous nucleation and rupture propagation are resolved. Poor numerical resolution can result in artificial complexity, impacting simulation results that are of potential interest for characterizing seismic hazard such as earthquake size distributions, moment release, and recurrence times. These results inform the development of more advanced SEAS models, contributing to our further understanding of earthquake system dynamics

    Beyond Roe: Changes to the Supreme Court and Implications for Reproductive Health

    No full text
    Supreme Court Justice Anthony Kennedy\u27s retirement raises questions about the future of Roe v. Wade and how any changes to the federal law could impact women\u27s access to abortion and to reproductive health care more generally. Panelists explore the future of reproductive health care by examining the historical roots of the laws about birth control and abortion and their influence on the present day ethical, moral and constitutional debates

    Beyond Roe: Changes to the Supreme Court and Implications for Reproductive Health

    No full text
    Supreme Court Justice Anthony Kennedy\u27s retirement raises questions about the future of Roe v. Wade and how any changes to the federal law could impact women\u27s access to abortion and to reproductive health care more generally. Panelists explore the future of reproductive health care by examining the historical roots of the laws about birth control and abortion and their influence on the present day ethical, moral and constitutional debates
    corecore