61 research outputs found

    Detection of MERS-CoV antigen on formalin-fixed paraffin-embedded nasal tissue of alpacas by immunohistochemistry using human monoclonal antibodies directed against different epitopes of the spike protein

    Get PDF
    Middle East respiratory syndrome (MERS) represents an important respiratory disease accompanied by lethal outcome in one third of human patients. In recent years, several investigators developed protective antibodies which could be used as prophylaxis in prospective human epidemics. In the current study, eight human monoclonal antibodies (mAbs) with neutralizing and non-neutralizing capabilities, directed against different epitopes of the MERS-coronavirus (MERS-CoV) spike (MERS-S) protein, were investigated with regard to their ability to immunohistochemically detect respective epitopes on formalin-fixed paraffin-embedded (FFPE) nasal tissue sections of MERS-CoV experimentally infected alpacas. The most intense immunoreaction was detected using a neutralizing antibody directed against the receptor binding domain S1B of the MERS-S protein, which produced an immunosignal in the cytoplasm of ciliated respiratory epithelium and along the apical membranous region. A similar staining was obtained by two other mAbs which recognize the sialic acid-binding domain and the ectodomain of the membrane fusion subunit S2, respectively. Five mAbs lacked immunoreactivity for MERS-CoV antigen on FFPE tissue, even though they belong, at least in part, to the same epitope group. In summary, three tested human mAbs demonstrated capacity for detection of MERS-CoV antigen on FFPE samples and may be implemented in double or triple immunohistochemical methods.info:eu-repo/semantics/acceptedVersio

    Evolution of Swine Influenza Virus H3N2 in Vaccinated and Nonvaccinated Pigs after Previous Natural H1N1 Infection

    Get PDF
    Swine influenza viruses (SIV) produce a highly contagious and worldwide distributed disease that can cause important economic losses to the pig industry. Currently, this virus is endemic in farms and, although used limitedly, trivalent vaccine application is the most extended strategy to control SIV. The presence of pre-existing immunity against SIV may modulate the evolutionary dynamic of this virus. To better understand these dynamics, the viral variants generated in vaccinated and nonvaccinated H3N2 challenged pigs after recovery from a natural A(H1N1) pdm09 infection were determined and analyzed. In total, seventeen whole SIV genomes were determined, 6 from vaccinated, and 10 from nonvaccinated animals and their inoculum, by NGS. Herein, 214 de novo substitutions were found along all SIV segments, 44 of them being nonsynonymous ones with an allele frequency greater than 5%. Nonsynonymous substitutions were not found in NP; meanwhile, many of these were allocated in PB2, PB1, and NS1 proteins. Regarding HA and NA proteins, higher nucleotide diversity, proportionally more nonsynonymous substitutions with an allele frequency greater than 5%, and different domain allocations of mutants, were observed in vaccinated animals, indicating different evolutionary dynamics. This study highlights the rapid adaptability of SIV in different environments.info:eu-repo/semantics/publishedVersio

    Genetic diversification patterns in swine influenza A virus (H1N2) in vaccinated and nonvaccinated animals

    Get PDF
    Influenza A viruses (IAVs) are characterized by having a segmented genome, low proofreading polymerases, and a wide host range. Consequently, IAVs are constantly evolving in nature causing a threat to animal and human health. In 2009 a new human pandemic IAV strain arose in Mexico because of a reassortment between two strains previously circulating in pigs; Eurasian "avian-like" (EA) swine H1N1 and "human-like" H1N2, highlighting the importance of swine as adaptation host of avian to human IAVs. Nowadays, although of limited use, a trivalent vaccine, which include in its formulation H1N1, H3N2, and, H1N2 swine IAV (SIAV) subtypes, is one of the most applied strategies to reduce SIAV circulation in farms. Protection provided by vaccines is not complete, allowing virus circulation, potentially favoring viral evolution. The evolutionary dynamics of SIAV quasispecies were studied in samples collected at different times from 8 vaccinated and 8 nonvaccinated pigs, challenged with H1N2 SIAV. In total, 32 SIAV genomes were sequenced by next-generation sequencing, and subsequent variant-calling genomic analysis was carried out. Herein, a total of 364 de novo single nucleotide variants (SNV) were found along all genetic segments in both experimental groups. The nonsynonymous substitutions proportion found was greater in vaccinated animals suggesting that H1N2 SIAV was under positive selection in this scenario. The impact of each substitution with an allele frequency greater than 5% was hypothesized according to previous literature, particularly in the surface glycoproteins hemagglutinin and neuraminidase. The H1N2 SIAV quasispecies evolution capacity was evidenced, observing different evolutionary trends in vaccinated and nonvaccinated animals

    Vaccination against swine influenza in pigs causes different drift evolutionary patterns upon swine influenza virus experimental infection and reduces the likelihood of genomic reassortments

    Get PDF
    Influenza A viruses (IAVs) can infect a wide variety of bird and mammal species. Their genome is characterized by 8 RNA single stranded segments. The low proofreading activity of their polymerases and the genomic reassortment between different IAVs subtypes allow them to continuously evolve, constituting a constant threat to human and animal health. In 2009, a pandemic of an IAV highlighted the importance of the swine host in IAVs adaptation between humans and birds. The swine population and the incidence of swine IAV is constantly growing. In previous studies, despite vaccination, swine IAV growth and evolution were proven in vaccinated and challenged animals. However, how vaccination can drive the evolutionary dynamics of swine IAV after coinfection with two subtypes is poorly studied. In the present study, vaccinated and nonvaccinated pigs were challenged by direct contact with H1N1 and H3N2 independent swine IAVs seeder pigs. Nasal swab samples were daily recovered and broncho-alveolar lavage fluid (BALF) was also collected at necropsy day from each pig for swine IAV detection and whole genome sequencing. In total, 39 swine IAV whole genome sequences were obtained by next generation sequencing from samples collected from both experimental groups. Subsequently, genomic, and evolutionary analyses were carried out to detect both, genomic reassortments and single nucleotide variants (SNV). Regarding the segments found per sample, the simultaneous presence of segments from both subtypes was much lower in vaccinated animals, indicating that the vaccine reduced the likelihood of genomic reassortment events. In relation to swine IAV intra-host diversity, a total of 239 and 74 SNV were detected within H1N1 and H3N2 subtypes, respectively. Different proportions of synonymous and nonsynonymous substitutions were found, indicating that vaccine may be influencing the main mechanism that shape swine IAV evolution, detecting natural, neutral, and purifying selection in the different analyzed scenarios. SNV were detected along the whole swine IAV genome with important nonsynonymous substitutions on polymerases, surface glycoproteins and nonstructural proteins, which may have an impact on virus replication, immune system escaping and virulence of virus, respectively. The present study further emphasized the vast evolutionary capacity of swine IAV, under natural infection and vaccination pressure scenarios.This research was funded by grants AGL2016–75280-R from Ministerio de Ciencia, Innovación y Universidades from the Spanish government. ÁL-V has a pre-doctoral fellowship FPI 2017, Ministerio de Ciencia, Innovación y Universidades from the Spanish government.The authors would like to thank Laura Baioni for the sequencing libraries preparation. The authors also want to thank the IRTA-CReSA animal facilities staff for their work during the in vivo experiment. Lastly, we would like to thank Marta Pérez and all the people from CReSA who were involved in the experiment during the COVID-19 lockdowns.info:eu-repo/semantics/publishedVersio

    Evaluation of the capability of the PCV2 genome to encode miRNAs : lack of viral miRNA expression in an experimental infection

    Get PDF
    Porcine circovirus type 2 (PCV2) is a ssDNA virus causing PCV2-systemic disease (PCV2-SD), one of the most important diseases in swine. MicroRNAs (miRNAs) are a new class of small non-coding RNAs that regulate gene expression post-transcriptionally. Viral miRNAs have recently been described and the number of viral miRNAs has been increasing in the past few years. In this study, small RNA libraries were constructed from two tissues of subclinically PCV2 infected pigs to explore if PCV2 can encode viral miRNAs. The deep sequencing data revealed that PCV2 does not express miRNAs in an in vivo subclinical infection

    Combined effects of spray-drying conditions and postdrying storage time and temperature on Salmonella choleraesuis and Salmonella typhimurium survival when inoculated in liquid porcine plasma

    Get PDF
    Altres ajuts: GC/2014DI066The objective of this study was to determine the effectiveness of the spray-drying process on the inactivation of Salmonella choleraesuis and Salmonella typhimurium spiked in liquid porcine plasma and to test the additive effect of immediate postdrying storage. Commercial spray-dried porcine plasma was sterilized by irradiation and then reconstituted (1:9) with sterile water. Aliquots of reconstituted plasma were inoculated with either S. choleraesuis or S. typhimurium, subjected to spray-drying at an inlet temperature of 200°C and an outlet temperature of either 71 or 80°C, and each spray-drying temperature combinations were subjected to either 0, 30 or 60 s of residence time () as a simulation of residence time typical of commercial dryers. Spray-dried samples were stored at either 4·0 ± 3·0°C or 23·0 ± 0·3°C for 15 days. Bacterial counts of each Salmonella spp., were completed for all samples. For both Salmonella spp., spray-drying at both outlet temperatures reduced bacterial counts about 3 logs at 0 s, while there was about a 5·5 log reduction at 60 s. Storage of all dried samples at either 4·0 ± 3·0°C or 23·0 ± 0·3°C for 15 days eliminate all detectable bacterial counts of both Salmonella spp. Safety of raw materials from animal origin like spray-dried porcine plasma (SDPP) may be a concern for the swine industry. Spray-drying process and postdrying storage are good inactivation steps to reduce the bacterial load of Salmonella choleraesuis and Salmonella typhimurium. For both Salmonella spp., spray-drying at 71°C or 80°C outlet temperatures reduced bacterial counts about 3 log at residence time (RT) 0 s, while there was about a 5.5 log reduction at RT 60 s. Storage of all dried samples at either 4.0 ± 3.0°C or 23.0 ± 0.3°C for 15 days was effective for eliminating detectable bacterial counts of both Salmonella spp. Significance and Impact of the Study: Safety of raw materials from animal origin like spray-dried porcine plasma (SDPP) may be a concern for the swine industry. Spray-drying process and postdrying storage are good inactivation steps to reduce the bacterial load of Salmonella choleraesuis and Salmonella typhimurium. For both Salmonella spp., spray-drying at 71°C or 80°C outlet temperatures reduced bacterial counts about 3 log at residence time (RT) 0 s, while there was about a 5.5 log reduction at RT 60 s. Storage of all dried samples at either 4.0 ± 3.0°C or 23.0 ± 0.3°C for 15 days was effective for eliminating detectable bacterial counts of both Salmonella spp

    Immune Responses to Pandemic H1N1 Influenza Virus Infection in Pigs Vaccinated with a Conserved Hemagglutinin HA1 Peptide Adjuvanted with CAF ® 01 or CDA/αGalCerMPEG

    Get PDF
    This study aimed to evaluate the immune response and protection correlates against influenza virus (IV) infection in pigs vaccinated with the novel NG34 HA1 vaccine candidate adjuvanted with either CAF ® 01 or CDA/αGalCerMPEG (αGCM). Two groups of six pigs each were vaccinated intramuscularly twice with either NG34 + CAF ® 01 or NG34 + CDA/αGCM. As controls, groups of animals (n = 6 or 4) either non-vaccinated or vaccinated with human seasonal trivalent influenza vaccine or NG34 + Freund's adjuvant were included in the study. All animal groups were challenged with the 2009 pandemic (pdm09) strain of H1N1 (total amount of 7 × 10 6 TCID/mL) via intranasal and endotracheal routes 21 days after second vaccination. Reduced consolidated lung lesions were observed both on days three and seven post-challenge in the animals vaccinated with NG34 + CAF ® 01, whereas higher variability with relatively more severe lesions in pigs of the NG34 + CDA/αGCM group on day three post-infection. Among groups, animals vaccinated with NG34 + CDA/αGCM showed higher viral loads in the lung at seven days post infection whereas animals from NG34 + CAF ® 01 completely abolished virus from the lower respiratory tract. Similarly, higher IFNγ secretion and stronger IgG responses against the NG34 peptide in sera was observed in animals from the NG34 + CAF ® 01 group as compared to the NG34 + CDA/αGCM. NG34-vaccinated pigs with adjuvanted CAF ® 01 or CDA/αGCM combinations resulted in different immune responses as well as outcomes in pathology and viral shedding

    Co-localization of Middle East respiratory syndrome coronavirus (MERS-CoV) and dipeptidyl peptidase-4 in the respiratory tract and lymphoid tissues of pigs and llamas

    Get PDF
    This study investigated the co-localization of the Middle East respiratory syndrome coronavirus (MERS-CoV) and its receptor dipeptidyl peptidase-4 (DPP4) by immunohistochemistry (IHC) across respiratory and lymphoid organs of experimentally MERS-CoV infected pigs and llamas. Also, scanning electron microscopy was performed to assess the ciliary integrity of respiratory epithelial cells in both species. In pigs, on day 2 post-inoculation (p.i.), DPP4-MERS-CoV co-localization was detected in medial turbinate epithelium. On day 4 p.i., the virus/receptor co-localized in frontal and medial turbinate epithelial cells in pigs, and epithelial cells distributed unevenly through the whole nasal cavity and in the cervical lymph node in llamas. MERS-CoV viral nucleocapsid was mainly detected in upper respiratory tract sites on days 2 and 4 p.i. in pigs and day 4 p.i. in llamas. No MERS-CoV was detected on day 24 p.i. in any tissue by IHC. While pigs showed severe ciliary loss in the nasal mucosa both on days 2 and 4 p.i. and moderate loss in the trachea on days 4 and 24 p.i., ciliation of respiratory organs in llamas was not significantly affected. Obtained data confirm the role of DPP4 for MERS-CoV entry in respiratory epithelial cells of llamas. Notably, several nasal epithelial cells in pigs were found to express viral antigen but not DPP4, suggesting the possible existence of other molecule/s facilitating virus entry or down regulation of DPP4 upon infection

    The role of viral and host microRNAs in the Aujeszky's disease virus during the infection process

    Get PDF
    Porcine production is a primary market in the world economy. Controlling swine diseases in the farm is essential in order to achieve the sector necessities. Aujeszky's disease is a viral condition affecting pigs and is endemic in many countries of the world, causing important economic losses in the swine industry. microRNAs (miRNAs) are non-coding RNAs which modulates gene expression in animals, plants and viruses. With the aim of understanding miRNA roles during the Aujeszky's disease virus [ADV] (also known as suid herpesvirus type 1 [SuHV-1]) infection, the expression profiles of host and viral miRNAs were determined through deep sequencing in SuHV-1 infected porcine cell line (PK-15) and in an animal experimental SuHV-1 infection with virulent (NIA-3) and attenuated (Begonia) strains. In the in vivo approach miR-206, miR-133a, miR-133b and miR-378 presented differential expression between virus strains infection. In the in vitro approach, most miRNAs were down-regulated in infected groups. miR-92a and miR-92b-3p were up-regulated in Begonia infected samples. Functional analysis of all this over expressed miRNAs during the infection revealed their association in pathways related to viral infection processes and immune response. Furthermore, 8 viral miRNAs were detected by stem loop RT-qPCR in both in vitro and in vivo approaches, presenting a gene regulatory network affecting 59 viral genes. Most described viral miRNAs were related to Large Latency Transcript (LLT) and to viral transcription activators EP0 and IE180, and also to regulatory genes regarding their important roles in the host-pathogen interaction during viral infection
    corecore