30 research outputs found

    Coordinated Spindle Assembly and Orientation Requires Clb5p-Dependent Kinase in Budding Yeast

    Get PDF
    The orientation of the mitotic spindle along a polarity axis is critical in asymmetric cell divisions. In the budding yeast, Saccharomyces cerevisiae, loss of the S-phase B-type cyclin Clb5p under conditions of limited cyclin-dependent kinase activity (cdc28-4 clb5Δ cells) causes a spindle positioning defect that results in an undivided nucleus entering the bud. Based on time-lapse digital imaging microscopy of microtubules labeled with green fluorescent protein fusions to either tubulin or dynein, we observed that the asymmetric behavior of the spindle pole bodies during spindle assembly was lost in the cdc28-4 clb5Δ cells. As soon as a spindle formed, both poles were equally likely to interact with the bud cell cortex. Persistent dynamic interactions with the bud ultimately led to spindle translocation across the bud neck. Thus, the mutant failed to assign one spindle pole body the task of organizing astral microtubules towards the mother cell. Our data suggest that Clb5p-associated kinase is required to confer mother-bound behavior to one pole in order to establish correct spindle polarity. In contrast, B-type cyclins, Clb3p and Clb4p, though partially redundant with Clb5p for an early role in spindle morphogenesis, preferentially promote spindle assembly

    Differential contribution of Bud6p and Kar9p to microtubule capture and spindle orientation in S. cerevisiae

    Get PDF
    In Saccharomyces cerevisiae, spindle orientation is controlled by a temporal and spatial program of microtubule (MT)–cortex interactions. This program requires Bud6p/Aip3p to direct the old pole to the bud and confine the new pole to the mother cell. Bud6p function has been linked to Kar9p, a protein guiding MTs along actin cables. Here, we show that Kar9p does not mediate Bud6p functions in spindle orientation. Based on live microscopy analysis, kar9Δ cells maintained Bud6p-dependent MT capture. Conversely, bud6Δ cells supported Kar9p-associated MT delivery to the bud. Moreover, additive phenotypes in bud6Δ kar9Δ or bud6Δ dyn1Δ mutants underscored the separate contributions of Bud6p, Kar9p, and dynein to spindle positioning. Finally, tub2C354S, a mutation decreasing MT dynamics, suppressed a kar9Δ mutation in a BUD6-dependent manner. Thus, Kar9p-independent capture at Bud6p sites can effect spindle orientation provided MT turnover is reduced. Together, these results demonstrate Bud6p function in MT capture at the cell cortex, independent of Kar9p-mediated MT delivery along actin cables

    Bud6 Directs Sequential Microtubule Interactions with the Bud Tip and Bud Neck during Spindle Morphogenesis in Saccharomyces cerevisiae

    Get PDF
    In budding yeast, spindle polarity relies on a precise temporal program of cytoplasmic microtubule–cortex interactions throughout spindle assembly. Loss of Clb5-dependent kinase activity under conditions of attenuated Cdc28 function disrupts this program, resulting in diploid-specific lethality. Here we show that polarity loss is tolerated by haploids due to a more prominent contribution of microtubule–neck interactions to spindle orientation inherent to haploids. These differences are mediated by the relative partition of Bud6 between the bud tip and bud neck, distinguishing haploids from diploids. Bud6 localizes initially to the bud tip and accumulates at the neck concomitant with spindle assembly. bud6Δ mutant phenotypes are consistent with Bud6's role as a cortical cue for cytoplasmic microtubule capture. Moreover, mutations that affect Bud6 localization and partitioning disrupt the sequential program of microtubule–cortex interactions accordingly. These data support a model whereby Bud6 sequentially cues microtubule capture events at the bud tip followed by capture events at the bud neck, necessary for correct spindle morphogenesis and polarity

    The Protease Activity of Yeast Separase (Esp1) Is Required for Anaphase Spindle Elongation Independently of Its Role In Cleavage of Cohesin

    No full text
    Separase is a caspase-family protease required for the metaphase–anaphase transition in eukaryotes. In budding yeast, the separase ortholog, Esp1, has been shown to cleave a subunit of cohesin, Mcd1 (Scc1), thereby releasing sister chromatids from cohesion and allowing anaphase. However, whether Esp1 has other substrates required for anaphase has been controversial. Whereas it has been reported that cleavage of Mcd1 is sufficient to trigger anaphase in the absence of Esp1 activation, another study using a temperature-sensitive esp1 mutant concluded that depletion of Mcd1 was not sufficient for anaphase in the absence of Esp1 function. Here we revisit the issue and demonstrate that neither depletion of Mcd1 nor ectopic cleavage of Mcd1 by Tev1 protease is sufficient to support anaphase in an esp1 temperature-sensitive mutant. Furthermore, we demonstrate that the catalytic activity of the Esp1 protease is required for this Mcd1-independent anaphase function. These data suggest that another protein, possibly a spindle-associated protein, is cleaved by Esp1 to allow anaphase. Such a function is consistent with the previous observation that Esp1 localizes to the mitotic spindle during anaphase

    The impact of a COVID-19 lockdown on work productivity under good and poor compliance

    No full text
    BACKGROUND: In response to the COVID-19 pandemic, governments across the globe have imposed strict social distancing measures. Public compliance to such measures is essential for their success, yet the economic consequences of compliance are unknown. This is the first study to analyze the effects of good compliance compared with poor compliance to a COVID-19 suppression strategy (i.e. lockdown) on work productivity. METHODS: We estimate the differences in work productivity comparing a scenario of good compliance with one of poor compliance to the UK government COVID-19 suppression strategy. We use projections of the impact of the UK suppression strategy on mortality and morbidity from an individual-based epidemiological model combined with an economic model representative of the labour force in Wales and England. RESULTS: We find that productivity effects of good compliance significantly exceed those of poor compliance and increase with the duration of the lockdown. After 3 months of the lockdown, work productivity in good compliance is £398.58 million higher compared with that of poor compliance; 75% of the differences is explained by productivity effects due to morbidity and non-health reasons and 25% attributed to avoided losses due to pre-mature mortality. CONCLUSION: Good compliance to social distancing measures exceeds positive economic effects, in addition to health benefits. This is an important finding for current economic and health policy. It highlights the importance to set clear guidelines for the public, to build trust and support for the rules and if necessary, to enforce good compliance to social distancing measures
    corecore