126 research outputs found

    Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures

    Get PDF
    The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to traditionally manufactured barrel segments. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the z-fiber weave to a fully interlocked weave with comparable fiber bias, the z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study

    Development of Composite Sandwich Bonded Longitudinal Joints for Space Launch Vehicle Structures

    Get PDF
    The NASA Composite Technology for Exploration (CTE) Project is developing and demonstrating critical composite technologies with a focus on composite bonded joints; incorporating materials, design/analysis, manufacturing, and tests that utilize NASAs expertise and capabilities. The project has goals of advancing composite technologies and providing lightweight structures to support future NASA exploration missions. In particular, the CTE project will demonstrate weight-saving, performance-enhancing composite bonded joint technology for Space Launch System (SLS)-scale composite hardware. Advancements from the CTE project may be incorporated as future block upgrades for SLS structural components. This paper discusses the details of the development of a composite sandwich bonded longitudinal joint for a generic space launch vehicle structure called the CTE Point Design. The paper includes details of the design, analysis, materials, manufacturing, and testing of sub-element joint test articles to test the capability of the joint design. The test results show that the composite longitudinal bonded joint design significantly exceeds the design loads with a 2.0 factor of safety. Analysis pre-test failure predictions for all sub-element bonded joint test coupons were all within 10% of the average test coupon failure load. This testing and analysis provides confidence in the potential use of composite bonded joints for future launch vehicle structures

    Composite Technology for Exploration (CTE)

    Get PDF
    No abstract availabl

    Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures

    Get PDF
    The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to segmented barrel structures needed for autoclave cured barrel segments due to autoclave size constraints. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (Z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the Z-fiber weave to a fully interlocked weave with comparable fiber bias, the Z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study

    Radio frequency component and method of making same

    Get PDF
    An electrical component and a method of constructing it are disclosed. The component includes a hollow tubular structure. The structure includes a series of axially spaced apart rings and at least one outer perimeter housing member. The housing member interconnects the rings for defining an internal configuration of the hollow tubular structure for electrical purposes. The rings and the housing member each include inter-engageable elements for helping secure mechanically the rings and housing member together to facilitate final assembly of the electrical component

    Uniaxial Tensile Properties of AS4 3D Woven Composites with Four Different Resin Systems: Experimental Results and Analysis: Property Computations

    Get PDF
    As a part of the NASA Composite Technology for Exploration project, eight different AS4 3D orthogonal woven composite panels were manufactured and were subjected to mechanical testing including uniaxial tension along the weaves' warp direction. Each set, with four different resin systems (KCR-IR6070, EP2400, RTM6, and RS-50), included weave architectures designed using 12K and 6K AS4 carbon fiber yarns. For the tension testing conducted at Room Temperature Ambient (RTA) conditions, the elastic modulus and strength of these eight panels (as-processed and thermally-cycled) were measured and compared while the potential evolution of micro-cracking before and after thermal cycling were monitored via optical microscopy and X-Ray Computed Tomography. The data set also included test results of the as-processed materials at Elevated Temperature Wet (ETW) conditions. In the second part of this study, efforts were made to compute elastic constants for AS4 6K/RTM6 and AS4 12K/RTM6 materials by implementing a finite element approach and the Multiscale Generalized Method of Cells (MSGMC) technique developed at NASA Glenn Research Center. Digimat-FE was used to model the weave architectures, assign properties, calculate yarn properties, create the finite element mesh, and compute the elastic properties by applying periodic boundary conditions to finite element models of each repeating unit cell. The required input data for MSGMC was generated using Matlab from Digimat exported weave information. Experimental and computational results were compared, and the differences and limitations in correlating to the test data were briefly discussed

    Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation

    Get PDF
    BACKGROUND: The lung microbiome of healthy individuals frequently harbors oral organisms. Despite evidence that microaspiration is commonly associated with smoking-related lung diseases, the effects of lung microbiome enrichment with upper airway taxa on inflammation has not been studied. We hypothesize that the presence of oral microorganisms in the lung microbiome is associated with enhanced pulmonary inflammation. To test this, we sampled bronchoalveolar lavage (BAL) from the lower airways of 29 asymptomatic subjects (nine never-smokers, 14 former-smokers, and six current-smokers). We quantified, amplified, and sequenced 16S rRNA genes from BAL samples by qPCR and 454 sequencing. Pulmonary inflammation was assessed by exhaled nitric oxide (eNO), BAL lymphocytes, and neutrophils. RESULTS: BAL had lower total 16S than supraglottic samples and higher than saline background. Bacterial communities in the lower airway clustered in two distinct groups that we designated as pneumotypes. The rRNA gene concentration and microbial community of the first pneumotype was similar to that of the saline background. The second pneumotype had higher rRNA gene concentration and higher relative abundance of supraglottic-characteristic taxa (SCT), such as Veillonella and Prevotella, and we called it pneumotype(SCT). Smoking had no effect on pneumotype allocation, α, or β diversity. Pneumotype(SCT) was associated with higher BAL lymphocyte-count (P= 0.007), BAL neutrophil-count (P= 0.034), and eNO (P= 0.022). CONCLUSION: A pneumotype with high relative abundance of supraglottic-characteristic taxa is associated with enhanced subclinical lung inflammation

    Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads

    Get PDF
    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered

    Buckling of a Longitudinally Jointed Curved Composite Panel Arc Segment for Next Generation of Composite Heavy Lift Launch Vehicles: Verification Testing Analysis

    Get PDF
    In this work, an all-bonded out-of-autoclave (OoA) curved longitudinal composite joint concept, intended for use in the next generation of composite heavy lift launch vehicles, was evaluated and verified through finite element (FE) analysis, fabrication, testing, and post-test inspection. The joint was used to connect two curved, segmented, honeycomb sandwich panels representative of a Space Launch System (SLS) fairing design. The overall size of the resultant panel was 1.37 m by 0.74 m (54 in by 29 in), of which the joint comprised a 10.2 cm (4 in) wide longitudinal strip at the center. NASTRAN and ABAQUS were used to perform linear and non-linear analyses of the buckling and strength performance of the jointed panel. Geometric non-uniformities (i.e., surface contour imperfections) were measured and incorporated into the FE model and analysis. In addition, a sensitivity study of the specimens end condition showed that bonding face-sheet doublers to the panel's end, coupled with some stress relief features at corner-edges, can significantly reduce the stress concentrations near the load application points. Ultimately, the jointed panel was subjected to a compressive load. Load application was interrupted at the onset of buckling (at 356 kN 80 kips). A post-test non-destructive evaluation (NDE) showed that, as designed, buckling occurred without introducing any damage into the panel or the joint. The jointed panel was further capable of tolerating an impact damage to the same buckling load with no evidence of damage propagation. The OoA cured all-composite joint shows promise as a low mass factory joint for segmented barrels
    corecore