Buckling of a Longitudinally Jointed Curved Composite Panel Arc Segment for Next Generation of Composite Heavy Lift Launch Vehicles: Verification Testing and Analysis

Babak Farrokh*, Aerospace Engineer – NASA Goddard Space Flight Center *Co-authors:* Kenneth N. Segal, Michael Akkerman, Ronald L. Glenn, Benjamin T. Rodini, Wei-Ming Fan (NASA Goddard Space Flight Center); Sotiris Kellas (NASA Langley Research Center); and Evan J. Pineda (NASA Glenn Research Center) * *Presenting Author*

www.theCAMX.org

October 13-16, 2014 Orange County Convention Center Orlando, FL

Overview

The objective of this work was to exercise an out-of-autoclave all-bonded joint design concept for a Space Launch System (SLS) fairing during the Composites for Exploration (CoEx) effort

This presentation aims to:

• Report the buckling test and analysis correlation results for the 54" x 29" CoEx IM7/977-3 jointed panel. The analyses include:

 Pre-test analyses to obtain a baseline buckling load and the stress state

A trade study to look at design changes to lower the panel ends/corners stresses

Correlating the buckling test data:

○ Using linear vs. non-linear analysis

 Investigating surface (shape) imperfections on the jointed panel buckling behavior

 Present a summary results of the damaged jointed panel buckling and edge-supported compression tests, and to discuss the next steps to correlate the observed behaviors

Background

- The parent material:
 - The Hitco demonstration HC sandwich panel, 1/16th arc segment of 33-ft diameter cylinder, made under the CoEx program
 - 8-ply [45°/90°/-45°/0°]_s face-sheets (IM7/977-3) with 1 in thick 3.1 pcf Al honeycomb core

1 - 2 - 2 - S - 2

Segment 2/scan 1

Note: The final trimming reduced the overall size of the <u>"jointed panel" to 52 in. x 27.8 in</u>. (The panel still to be referred to as <u>54 in x 29 in</u>)

Bonded Joint Configuration

Ply ID	Global Ply	Material	Thickness	Angle
8		3IM7-977-3	0.0053	45.
7		3IM7-977-3	0.0053	90.
6		3IM7-977-3	0.0053	-45.
5		3IM7-977-3	0.0053	0.
4		3IM7-977-3	0.0053	0.
3		3IM7-977-3	0.0053	-45.
2		3IM7-977-3	0.0053	90.
1		3IM7-977-3	0.0053	45.

- Cured ply thickness:0.008 in
- Dominant mechanical properties were obtained through testing
- Joint out-of-autoclave cured to H/C panel in a co-bond operation
- The joint was made and inspected without any flaws

The Baseline FE Model Description

- ~0.5-in. element size with finer mesh at the joint region and at the fixed ends
 - Total of 61,146 elements and 56,444 nodes
- Face-sheets and bonded joint were modeled using 2-D elements (CQUAD4/PCOMP) with proper offsetting
- RBE2s were used to apply load and boundary conditions at the top and bottom
 - Top: Applied nodal load/displacement while constraining all degrees of freedom except for the axial translation
 - \circ Bottom: Fixed

The Baseline FE Model Description - Cont.

- Core was modeled using solid elements (5 elements through the thickness)
 - 2-D plate elements share nodes with the most inner/outer core solid elements
- Potting region and the Al frame (fixture) were modeled using solid elements
- Cut (potting) was modeled ~0.24 in wide to avoid a very fine mesh

Buckling and Strength Baseline Analyses

Panel End-Condition Improvement

To address the high stress concentration issue at the ends/corners the following modifications were examined:

- Adding doublers to panel ends
- Including stress relief features into the potting compound
- Having both, the end-doublers, and the stress relief features

Adding End Doublers

Adding Stress Relief Features

• The potting compound at the corners was removed, as shown, to release the stresses at the corners/edges

Face-sheet/Joint/Doubler Failure Index

Core Stresses

Core Through Thickness Stress at Panel Ends, psi **Base-line Configuration Base-line Configuration** Potted 301. P critical = 85.1 kips 262. Min: -289, Max: 301 psi 222. 183. with End-doublers (only) 144. 104. P critical = 88.7 kips \leftarrow 65. Min: -255, Max: 149 psi 25.7 with Stress Relief Features (only) -13.7 -53. P critical = 84.9 kips -92.3 -132. Min: -287, Max: 115 psi -171. with End-doublers and Stress Relief Features -210. -250. P critical = 88.4 kips \leftarrow -289. **Selected configuration** Min: -217, Max: 135 psi SOL 105 Honeycomb Out-of-Plane Stresses, psi Face-Sheet and Joint Configuration **Buckling Critical** Max. FI Min σ_z Max σ_z $|\tau_{zx}|$ Load (kips) Base-line 85.1 0.61 -289 301 459 with End-doublers 88.7 0.50 -255 149 478

0.54

0.49

115

135

75

-287

-217

with Stress Relief

Features with End-doublers

and Stress Relief

Features

84.9

88.4

Test Article

- Made to the recommended specifications
- The joint was inspected without any flaws (Also, made NDE standard)

Surface Non-uniformities to FE Model

Buckling Test

- Test was Conducted (by S. Kellas) at LaRC
- The jointed panel reached buckling load of 79.3 K-pounds without joint failure
 - Panel buckled toward IML
- Test Details:
 - o 600-kip test frame
 - Photogrammetry (VIC system) on both surfaces to obtain full-field strains/displacements
 - Four displacement transducers to measure end shortening
 - Total of 20 back-to-back strain gages on OML/IML for local strain measurements, specimen alignment and controlling the test

Buckling Test # 1

Surface Imperfection Affected Linear Buckling Response

 ~11% over predicting the buckling load when surface imperfections are not included
~8% over predicting when the surface imperfections are included
~4% difference in stiffness between test and

analysis

NASTRAN linear SOL 105 Euler eigenvector buckling contour

Surface Imperfection Affected Non-linear Buckling Response

Out-of-plane deformation at 0.25" imposed axial displacement

Surface imperfection NOT included in FEM

Panel buckles towards OML

Surface imperfection included in FEM

Bow Affected Buckling Critical Load

 Critical buckling load decreases as a result of including the surface Imperfections

•From within 5% the test value to about 2%

Onset of Buckling Determination

Back-to-back // 2D elements

Monitoring back to back elements' axial strains, in the panel's middle edge to determine the onset of buckling analytically – Analogous to what determines when the buckling event has occurred during the experiment, prior to unloading the panel, without cartographically failing the specimen.

Axial Deformation/ End Shortening Correlation

Out-of-plane Deformation Correlation

0.

Test correlation at buckling load of ~79.3 kips

0.05

Test correlation at buckling load of ~79.3 kips

Axial Strain Correlation

Test correlation at buckling load of ~79.3 kips

• Qualitative and qualitative comparison

• The ~4% stiffness difference causes the FEA to show slightly higher axial strains

Hoop Strain Correlation

0.00198

0.00186

0.00175

0.00163

0.00151

0.0014

0.00128

0.00104

0.000928

0.000811

0.000694

0.000577

0.000461

0.000344

0.000227

0.00011

Test correlation at buckling load of ~79.3 kips

OML VIC Results

OML FEA Results

Damaged Jointed Panel Buckling Test Impacted OML – Off Joint Centerline

Buckling Test # 2

Pre-Test Impact Damage - UT Inspection Results

Post Test - UT Inspection Results of the Same Damage Area

Joint damage does not grow after buckling Test (80K lbs-f)

5.5 ft-lbs Impact Energy

Impact and UT inspections by W. Jackson & M. Czabaj at NASA/LaRC

Edge-Supported Damaged Jointed Panel Tests: Impacted OML – Off Joint Centerline

-8000

After 5.5 ft-lb impact

The catastrophic failure at average center strain of +6000 με (~123 kips)

Next Steps

- Correlate the edge-supported panel compression test to failure
 - Modeling the impacted initial damage
 - Study the panel's response without and with the initial damage
 - And ultimately, model and analyze the damage propagation leading to the catastrophic failure at ~123 kips
 - **Objective:** To adapt a practical/general analysis approach for analyzing similar progressive failures in composite joints

Acknowledgement

- NASA's Composite for Exploration (CoEx) team who entrusted us to work for the advancement of joints technology and who performed the joints development with us:
 - Harry Wilems (NASA/ Goddard Space Flight Center)
 - Wade Jackson, Michael Czabaj, and Mark Shuart (NASA/Langley Research Center)
 - Tom Krivanek, and James Sutter (NASA/ Glenn Research Center)
 - Larry Pelham (NASA/Marshall Space Flight Center)

