7 research outputs found
Morin provides therapeutic effect by attenuating oxidative stress, inflammation, endoplasmic reticulum stress, autophagy, apoptosis, and oxidative DNA damage in testicular toxicity caused by ifosfamide in rats
Objective(s): In the present study, it was evaluated whether morin has a protective effect on testicular toxicity caused by ifosfamide (IFOS), which is used in the treatment of various malignancies. Materials and Methods: For this purpose, 100 or 200 mg/kg morin was given to Sprague Dawley rats for 2 days, and a single dose (500 mg/kg) IFOS was administered on the 2nd day. At the 24th hr of IFOS administration, animals were decapitated and testicular tissues were taken and the status of oxidative stress, inflammation, endoplasmic reticulum stress (ERS), autophagy, and apoptosis markers were analyzed by biochemical, molecular, and histopathological methods.Results: According to the data obtained, it was determined that IFOS caused oxidative stress in testicular tissues. It was observed that inflammation, ERS, autophagy, apoptosis, and oxidative DNA damage occurred with oxidative stress. Morin treatment suppressed oxidative stress. Morin showed anti-inflammatory effects by reducing TNF-α and IL-1β protein levels. It also increased the mRNA transcript levels of the ERS marker ATF-6, PERK, IRE1, GRP-78, and CHOP genes, and the apoptosis marker genes Bax, Casp-3, and apaf-1. It up-regulated the anti-apoptotic protein Bcl-2 gene and the cell survival signal AKT-2 gene. Morin caused a decrease in beclin-1 protein levels and showed an anti-autophagic effect. In addition, morin attenuated oxidative DNA damage and decreased 8-OHdG immune-positive cell numbers.Conclusion: As a result, it was observed that IFOS caused cellular damage by activating various signaling pathways in testicular tissue, while morin exhibited protective properties against this damage
Chrysin Protects Rat Kidney from Paracetamol-Induced Oxidative Stress, Inflammation, Apoptosis, and Autophagy: A Multi-Biomarker Approach
Paracetamol (PC) is a safe analgesic and antipyretic drug at therapeutic doses, and it is widely used in clinics. However, at high doses, it can induce hepatotoxicity and nephrotoxicity. Chrysin (CR) is a natural flavonoid that has biological activities that include being an antioxidant, an anti-inflammatory, and an anti-cancer agent. The main objective of this study was to investigate the efficacy of CR against PC-induced nephrotoxicity in rats. CR was given orally via feeding needle to male Sprague Dawley rats as a single daily dose of 25 or 50 mg/kg for six days. PC was administered orally via feeding needle as a single dose on the sixth day. PC caused significant glutathione depletion, lipid peroxidation, increased serum toxicity markers (serum urea and creatinine), and reductions in activities of antioxidant enzymes (superoxide dismutase — SOD, catalase — CAT, and glutathione peroxidase — GPx). The renal protective effect of CR was associated with decreasing the regulation of serum renal toxicity markers and increasing the regulation of antioxidant enzyme activities. Additionally, PC led to significant increases in the levels of inflammatory markers including tumour necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-33 (IL-33). Furthermore, PC induced apoptotic tissue damage by increasing cysteine aspartate-specific protease-3 (caspase-3) activity and autophagic tissue damage by increasing the expression of light chain 3B (LC3B). CR therapy significantly decreased these values in rats. This study demonstrated that CR has antioxidant, anti-apoptotic, anti-inflammatory and anti-autophagic effects on PC-induced kidney toxicity in rats
The effects of hesperidin on sodium arsenite-induced different organ toxicity in rats on metabolic enzymes as antidiabetic and anticholinergics potentials: A biochemical approach
In our work, it was purposed to investigate the effects of sodium arsenite (SA) and hesperidin (HSP) administered to rats on some metabolic enzymes including carbonic anhydrase (CA), aldose reductase (AR), paraoxonase-1 (PON1), alpha-glycosidase (alpha-Gly), butyrylcholine esterase (BChE), acetylcholine esterase (AChE) enzymes activities in the brain, heart, liver, testis, and kidney tissues of rats. CA activities were significantly decreased in testis, liver, and heart tissues of rats given HSP, SA, SA+HSP-100, and SA+HSP-200 compared to control (p < 0.05). In liver tissue, AChE and BChE enzymes activities were significantly reduced given in all groups. In all tissues, alpha-Gly activity was reduced given in all groups. In the current study, aldose reductase enzyme activity was reduced significantly in testis, brain, and heart tissues of all groups compared to standard (p < 0.05). PON1 enzyme activity was increased significantly in kidney and liver tissues of rats HSP groups and decreased SA groups compared to control