30 research outputs found

    Non-gaussianity of inflationary field perturbations from the field equation

    Full text link
    We calculate the tree-level bispectrum of the inflaton field perturbation directly from the field equations, and construct the corresponding f_NL parameter. Our results agree with previous ones derived from the Lagrangian. We argue that quantum theory should only be used to calculate the correlators when they first become classical a few Hubble times after horizon exit, the classical evolution taking over thereafter.Comment: 16 pages, uses iopart.sty. v2: replaced with version accepted by JCAP; minor changes of wording only. v3: supersedes version published by journal; typo fixed in Eq. (20) and updated references. v4: sign errors in Eqs. (32) and (38) correcte

    Non-gaussianity from the inflationary trispectrum

    Get PDF
    We present an estimate for the non-linear parameter \tau_NL, which measures the non-gaussianity imprinted in the trispectrum of the comoving curvature perturbation, \zeta. Our estimate is valid throughout the inflationary era, until the slow-roll approximation breaks down, and takes into account the evolution of perturbations on superhorizon scales. We find that the non-gaussianity is always small if the field values at the end of inflation are negligible when compared to their values at horizon crossing. Under the same assumption, we show that in Nflation-type scenarios, where the potential is a sum of monomials, the non-gaussianity measured by \tau_NL is independent of the couplings and initial conditions.Comment: 15 pages, uses iopart.sty. Replaced with version accepted by JCAP; journal reference adde

    Non-Gaussianities in two-field inflation

    Get PDF
    We study the bispectrum of the curvature perturbation on uniform energy density hypersurfaces in models of inflation with two scalar fields evolving simultaneously. In the case of a separable potential, it is possible to compute the curvature perturbation up to second order in the perturbations, generated on large scales due to the presence of non-adiabatic perturbations, by employing the δN\delta N-formalism, in the slow-roll approximation. In this case, we provide an analytic formula for the nonlinear parameter fNLf_{NL}. We apply this formula to double inflation with two massive fields, showing that it does not generate significant non-Gaussianity; the nonlinear parameter at the end of inflation is slow-roll suppressed. Finally, we develop a numerical method for generic two-field models of inflation, which allows us to go beyond the slow-roll approximation and confirms our analytic results for double inflation.Comment: 29 pages, 6 figures. v2, comparison with previous estimates. v3, JCAP version; Revisions based on Referee's comment, corrected typos, added few eqs and refs, conclusions unchange

    The inflationary trispectrum

    Get PDF
    We calculate the trispectrum of the primordial curvature perturbation generated by an epoch of slow-roll inflation in the early universe, and demonstrate that the non-gaussian signature imprinted at horizon crossing is unobservably small, of order tau_NL < r/50, where r < 1 is the tensor-to-scalar ratio. Therefore any primordial non-gaussianity observed in future microwave background experiments is likely to have been synthesized by gravitational effects on superhorizon scales. We discuss the application of Maldacena's consistency condition to the trispectrum.Comment: 23 pages, 2 diagrams drawn with feynmp.sty, uses iopart.cls. v2, replaced with version accepted by JCAP. Estimate of maximal tau_NL refined in Section 5, resulting in smaller numerical value. Sign errors in Eq. (44) and Eq. (48) corrected. Some minor notational change

    Nonlinear curvature perturbations in an exactly soluble model of multi-component slow-roll inflation

    Get PDF
    Using the nonlinear δN\delta N formalism, we consider a simple exactly soluble model of multi-component slow-roll inflation in which the nonlinear curvature perturbation can be evaluated analytically.Comment: 4 pages, no figure, typos corrected, references added, final version to be published in CQ

    Diagrammatic approach to non-Gaussianity from inflation

    Get PDF
    We present Feynman type diagrams for calculating the n-point function of the primordial curvature perturbation in terms of scalar field perturbations during inflation. The diagrams can be used to evaluate the corresponding terms in the n-point function at tree level or any required loop level. Rules are presented for drawing the diagrams and writing down the corresponding terms in real space and Fourier space. We show that vertices can be renormalised to automatically account for diagrams with dressed vertices. We apply these rules to calculate the primordial power spectrum up to two loops, the bispectrum including loop corrections, and the trispectrum.Comment: 17 pages, 13 figures. v2: Comments and references added, v3: Introduction expanded, subsection on evaluating loop diagrams added, minor errors corrected, references adde

    Conditions for large non-Gaussianity in two-field slow-roll inflation

    Get PDF
    We study the level of primordial non-Gaussianity in slow-roll two-field inflation. Using an analytic formula for the nonlinear parameter f_nl in the case of a sum or product separable potential, we find that it is possible to generate significant non-Gaussianity even during slow-roll inflation with Gaussian perturbations at Hubble exit. In this paper we give the general conditions to obtain large non-Gaussianity and calculate the level of fine-tuning required to obtain this. We present explicit models in which the non-Gaussianity at the end of inflation can exceed the current observational bound of |f_nl|<100.Comment: 16 pages, 6 figures, 1 table, v2: typos corrected and references added, matches version accepted by JCA

    Non-Gaussian perturbations from multi-field inflation

    Get PDF
    We show how the primordial bispectrum of density perturbations from inflation may be characterised in terms of manifestly gauge-invariant cosmological perturbations at second order. The primordial metric perturbation, zeta, describing the perturbed expansion of uniform-density hypersurfaces on large scales is related to scalar field perturbations on unperturbed (spatially-flat) hypersurfaces at first- and second-order. The bispectrum of the metric perturbation is thus composed of (i) a local contribution due to the second-order gauge-transformation, and (ii) the instrinsic bispectrum of the field perturbations on spatially flat hypersurfaces. We generalise previous results to allow for scale-dependence of the scalar field power spectra and correlations that can develop between fields on super-Hubble scales.Comment: 11 pages, RevTex; minor changes to text; conclusions unchanged; version to appear in JCA

    Infrared effects in inflationary correlation functions

    Full text link
    In this article, I briefly review the status of infrared effects which occur when using inflationary models to calculate initial conditions for a subsequent hot, dense plasma phase. Three types of divergence have been identified in the literature: secular, "time-dependent" logarithms, which grow with time spent outside the horizon; "box-cutoff" logarithms, which encode a dependence on the infrared cutoff when calculating in a finite-sized box; and "quantum" logarithms, which depend on the ratio of a scale characterizing new physics to the scale of whatever process is under consideration, and whose interpretation is the same as conventional field theory. I review the calculations in which these divergences appear, and discuss the methods which have been developed to deal with them.Comment: Invited review for focus section of Classical & Quantum Gravity on nonlinear and nongaussian perturbation theory. Some improvements compared to version which will appear in CQG, especially in Sec. 2.3. 30 pages + references

    One-loop corrections to a scalar field during inflation

    Full text link
    The leading quantum correction to the power spectrum of a gravitationally-coupled light scalar field is calculated, assuming that it is generated during a phase of single-field, slow-roll inflation.Comment: 33 pages, uses feynmp.sty and ioplatex journal style. v2: matches version published in JCAP. v3: corrects sign error in Eq. (58). Corrects final coefficient of the logarithm in Eq. (105). Small corrections to discussion of divergences in 1-point function. Minor improvements to discussion of UV behaviour in Sec. 4.
    corecore