41 research outputs found

    Parameters for a Super-Flavor-Factory

    Get PDF
    A Super Flavor Factory, an asymmetric energy e+e- collider with a luminosity of order 10^36 cm-2s-1, can provide a sensitive probe of new physics in the flavor sector of the Standard Model. The success of the PEP-II and KEKB asymmetric colliders in producing unprecedented luminosity above 10^34 cm-2s-1 has taught us about the accelerator physics of asymmetric e+e- colliders in a new parameter regime. Furthermore, the success of the SLAC Linear Collider and the subsequent work on the International Linear Collider allow a new Super-Flavor collider to also incorporate linear collider techniques. This note describes the parameters of an asymmetric Flavor-Factory collider at a luminosity of order 10^36 cm-2s-1 at the Upsilon(4S) resonance and about 10^35 cm-2s-1 at the Tau production threshold. Such a collider would produce an integrated luminosity of about 10,000 fb-1 (10 ab-1) in a running year (10^7 sec) at the Upsilon(4S) resonance.Comment: Flavor Physics & CP Violation Conference, Vancouver, 200

    Interaction region design for a Super-B factroy

    Get PDF
    We present a preliminary design of an interaction region for a Super-B Factory with luminosity of 1times1036 cm-2 sec-1. The collision has a plusmn17 mrad crossing angle and the first magnetic element starts 0.3 m from the collision point. We show that synchrotron radiation backgrounds are controlled and are at least as good as the backgrounds calculated for the PEP-II accelerator. How the beams get into and out of a shared beam pipe is illustrated along with the control of relatively high synchrotron radiation power from the outgoing beams. The high luminosity makes radiative bhabha backgrounds significantly higher than that of the present B-Factories and this must be addressed as the design is further improved

    The Physics of the B Factories

    Get PDF

    Updated Design of the Italian SuperB Factory Injection System

    Get PDF
    International audienceThe ultra high luminosity B-factory (SuperB) project of INFN requires a high performance and reliable injection system, providing electrons at 4 GeV and positrons at 7 GeV, to fulfill the very tight requirements of the collider. Due to the short beam lifetime, continuous injection of electrons and positrons in both HER and LER rings is necessary to keep the average luminosity at a high level. An updated version of the injection system, optimized at higher repetition frequency is presented. This scheme includes a polarized electron gun, a positron production scheme with electron/positron conversion at low energy 0.6 GeV, and a 1 GeV damping ring to reduce the injected emittance of the positron beam
    corecore