12 research outputs found

    Mineralogy of the MSL Curiosity landing site in Gale crater as observed by MRO/CRISM

    Get PDF
    Orbital data acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and High Resolution Imaging Science Experiment instruments on the Mars Reconnaissance Orbiter (MRO) provide a synoptic view of compositional stratigraphy on the floor of Gale crater surrounding the area where the Mars Science Laboratory (MSL) Curiosity landed. Fractured, light-toned material exhibits a 2.2 ”m absorption consistent with enrichment in hydroxylated silica. This material may be distal sediment from the Peace Vallis fan, with cement and fracture fill containing the silica. This unit is overlain by more basaltic material, which has 1 ”m and 2 ”m absorptions due to pyroxene that are typical of Martian basaltic materials. Both materials are partially obscured by aeolian dust and basaltic sand. Dunes to the southeast exhibit differences in mafic mineral signatures, with barchan dunes enhanced in olivine relative to pyroxene-containing longitudinal dunes. This compositional difference may be related to aeolian grain sorting

    Silica in a Mars analog environment: Ka'u Desert, Kilauea Volcano, Hawaii

    Get PDF
    Airborne Visible/Near-Infrared Imaging Spectrometer (AVIRIS) data acquired over the Ka'u Desert are atmospherically corrected to ground reflectance and used to identify the mineralogic components of relatively young basaltic materials, including 250–700 and 200–400 year old lava flows, 1971 and 1974 flows, ash deposits, and solfatara incrustations. To provide context, a geologic surface units map is constructed, verified with field observations, and supported by laboratory analyses. AVIRIS spectral end-members are identified in the visible (0.4 to 1.2 ÎŒm) and short wave infrared (2.0 to 2.5 ÎŒm) wavelength ranges. Nearly all the spectral variability is controlled by the presence of ferrous and ferric iron in such minerals as pyroxene, olivine, hematite, goethite, and poorly crystalline iron oxides or glass. A broad, nearly ubiquitous absorption feature centered at 2.25 ÎŒm is attributed to opaline (amorphous, hydrated) silica and is found to correlate spatially with mapped geologic surface units. Laboratory analyses show the silica to be consistently present as a deposited phase, including incrustations downwind from solfatara vents, cementing agent for ash duricrusts, and thin coatings on the youngest lava flow surfaces. A second, Ti-rich upper coating on young flows also influences spectral behavior. This study demonstrates that secondary silica is mobile in the Ka'u Desert on a variety of time scales and spatial domains. The investigation from remote, field, and laboratory perspectives also mimics exploration of Mars using orbital and landed missions, with important implications for spectral characterization of coated basalts and formation of opaline silica in arid, acidic alteration environments

    Orbital evidence for more widespread carbonate-bearing rocks on Mars

    Get PDF
    Carbonates are key minerals for understanding ancient Martian environments because they are indicators of potentially habitable, neutral-to-alkaline water and may be an important reservoir for paleoatmospheric CO_2. Previous remote sensing studies have identified mostly Mg-rich carbonates, both in Martian dust and in a Late Noachian rock unit circumferential to the Isidis basin. Here we report evidence for older Fe- and/or Ca-rich carbonates exposed from the subsurface by impact craters and troughs. These carbonates are found in and around the Huygens basin northwest of Hellas, in western Noachis Terra between the Argyre basin and Valles Marineris, and in other isolated locations spread widely across the planet. In all cases they cooccur with or near phyllosilicates, and in Huygens basin specifically they occupy layered rocks exhumed from up to ~5 km depth. We discuss factors that might explain their observed regional distribution, arguments for why carbonates may be even more widespread in Noachian materials than presently appreciated and what could be gained by targeting these carbonates for further study with future orbital or landed missions to Mars

    Orbital evidence for more widespread carbonate-bearing rocks on Mars

    Get PDF
    Carbonates are key minerals for understanding ancient Martian environments because they are indicators of potentially habitable, neutral-to-alkaline water and may be an important reservoir for paleoatmospheric CO_2. Previous remote sensing studies have identified mostly Mg-rich carbonates, both in Martian dust and in a Late Noachian rock unit circumferential to the Isidis basin. Here we report evidence for older Fe- and/or Ca-rich carbonates exposed from the subsurface by impact craters and troughs. These carbonates are found in and around the Huygens basin northwest of Hellas, in western Noachis Terra between the Argyre basin and Valles Marineris, and in other isolated locations spread widely across the planet. In all cases they cooccur with or near phyllosilicates, and in Huygens basin specifically they occupy layered rocks exhumed from up to ~5 km depth. We discuss factors that might explain their observed regional distribution, arguments for why carbonates may be even more widespread in Noachian materials than presently appreciated and what could be gained by targeting these carbonates for further study with future orbital or landed missions to Mars

    Landing Site Dispersion Analysis and Statistical Assessment for the Mars Phoenix Lander

    No full text
    The Mars Phoenix Lander launched on August 4, 2007 and successfully landed on Mars 10 months later on May 25, 2008. Landing ellipse predicts and hazard maps were key in selecting safe surface targets for Phoenix. Hazard maps were based on terrain slopes, geomorphology maps and automated rock counts of MRO's High Resolution Imaging Science Experiment (HiRISE) images. The expected landing dispersion which led to the selection of Phoenix's surface target is discussed as well as the actual landing dispersion predicts determined during operations in the weeks, days, and hours before landing. A statistical assessment of these dispersions is performed, comparing the actual landing-safety probabilities to criteria levied by the project. Also discussed are applications for this statistical analysis which were used by the Phoenix project. These include using the statistical analysis used to verify the effectiveness of a pre-planned maneuver menu and calculating the probability of future maneuvers

    Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters

    Get PDF
    Cross crater is a 65 km impact crater, located in the Noachian highlands of the Terra Sirenum region of Mars (30°S, 158°W), which hosts aluminum phyllosilicate deposits first detected by the Observatoire pour la MinĂ©ralogie, L’Eau, les Glaces et l’ActivitiĂ© (OMEGA) imaging spectrometer on Mars Express. Using high-resolution data from the Mars Reconnaissance Orbiter, we examine Cross crater’s basin-filling sedimentary deposits. Visible/shortwave infrared (VSWIR) spectra from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions diagnostic of alunite. Combining spectral data with high-resolution images, we map a large (10 km × 5 km) alunite-bearing deposit in southwest Cross crater, widespread kaolin-bearing sediments with variable amounts of alunite that are layered in <10 m scale beds, and silica- and/or montmorillonite-bearing deposits that occupy topographically lower, heavily fractured units. The secondary minerals are found at elevations ranging from 700 to 1550 m, forming a discontinuous ring along the crater wall beneath darker capping materials. The mineralogy inside Cross crater is different from that of the surrounding terrains and other martian basins, where Fe/Mg-phyllosilicates and Ca/Mg-sulfates are commonly found. Alunite in Cross crater indicates acidic, sulfurous waters at the time of its formation. Waters in Cross crater were likely supplied by regionally upwelling groundwaters as well as through an inlet valley from a small adjacent depression to the east, perhaps occasionally forming a lake or series of shallow playa lakes in the closed basin. Like nearby Columbus crater, Cross crater exhibits evidence for acid sulfate alteration, but the alteration in Cross is more extensive/complete. The large but localized occurrence of alunite suggests a localized, high-volume source of acidic waters or vapors, possibly supplied by sulfurous (H_2S- and/or SO_2-bearing) waters in contact with a magmatic source, upwelling steam or fluids through fracture zones. The unique, highly aluminous nature of the Cross crater deposits relative to other martian acid sulfate deposits indicates acid waters, high water throughput during alteration, atypically glassy and/or felsic materials, or a combination of these conditions

    Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters

    No full text
    Cross crater is a 65 km impact crater, located in the Noachian highlands of the Terra Sirenum region of Mars (30°S, 158°W), which hosts aluminum phyllosilicate deposits first detected by the Observatoire pour la MinĂ©ralogie, L’Eau, les Glaces et l’ActivitiĂ© (OMEGA) imaging spectrometer on Mars Express. Using high-resolution data from the Mars Reconnaissance Orbiter, we examine Cross crater’s basin-filling sedimentary deposits. Visible/shortwave infrared (VSWIR) spectra from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions diagnostic of alunite. Combining spectral data with high-resolution images, we map a large (10 km × 5 km) alunite-bearing deposit in southwest Cross crater, widespread kaolin-bearing sediments with variable amounts of alunite that are layered in <10 m scale beds, and silica- and/or montmorillonite-bearing deposits that occupy topographically lower, heavily fractured units. The secondary minerals are found at elevations ranging from 700 to 1550 m, forming a discontinuous ring along the crater wall beneath darker capping materials. The mineralogy inside Cross crater is different from that of the surrounding terrains and other martian basins, where Fe/Mg-phyllosilicates and Ca/Mg-sulfates are commonly found. Alunite in Cross crater indicates acidic, sulfurous waters at the time of its formation. Waters in Cross crater were likely supplied by regionally upwelling groundwaters as well as through an inlet valley from a small adjacent depression to the east, perhaps occasionally forming a lake or series of shallow playa lakes in the closed basin. Like nearby Columbus crater, Cross crater exhibits evidence for acid sulfate alteration, but the alteration in Cross is more extensive/complete. The large but localized occurrence of alunite suggests a localized, high-volume source of acidic waters or vapors, possibly supplied by sulfurous (H_2S- and/or SO_2-bearing) waters in contact with a magmatic source, upwelling steam or fluids through fracture zones. The unique, highly aluminous nature of the Cross crater deposits relative to other martian acid sulfate deposits indicates acid waters, high water throughput during alteration, atypically glassy and/or felsic materials, or a combination of these conditions
    corecore