1,302 research outputs found
Flexural pivots for space applications
Design and fabrication of flexible pivots for aerospace structure
Interaction-induced dephasing of Aharonov-Bohm oscillations
We study the effect of the electron-electron interaction on the amplitude of
mesoscopic Aharonov-Bohm oscillations in quasi-one-dimensional (Q1D) diffusive
rings. We show that the dephasing length L_phi^AB governing the damping factor
exp(-2piR / L_phi^AB) of the oscillations is parametrically different from the
common dephasing length for the Q1D geometry. This is due to the fact that the
dephasing is governed by energy transfers determined by the ring circumference
2piR, making L_phi^AB R-dependent.Comment: 4 pages, 2 figures. Minor changes, final version published in PR
Recommended from our members
A reassessment of Antarctic plateau reactive nitrogen based on ANTCI 2003 airborne and ground based measurements
The first airborne measurements of nitric oxide (NO) on the Antarctic plateau have demonstrated that the previously reported elevated levels of this species extend well beyond the immediate vicinity of South Pole. Although the current database is still relatively weak and critical laboratory experiments are still needed, the findings here suggest that the chemical uniqueness of the plateau may be substantially greater than first reported. For example, South Pole ground-based findings have provided new evidence showing that the dominant process driving the release of nitrogen from the snowpack during the spring/summer season (post-depositional loss) is photochemical in nature with evaporative processes playing a lesser role. There is also new evidence suggesting that nitrogen, in the form of nitrate, may undergo multiple recycling within a given photochemical season. Speculation here is that this may be a unique property of the plateau and much related to its having persistent cold temperatures even during summer. These conditions promote the efficient adsorption of molecules like HNO3 (and very likely HO2NO2) onto snow-pack surface ice where we have hypothesized enhanced photochemical processing can occur, leading to the efficient release of NOx to the atmosphere. In addition, to these process-oriented tentative conclusions, the findings from the airborne studies, in conjunction with modeling exercises suggest a new paradigm for the plateau atmosphere. The near-surface atmosphere over this massive region can be viewed as serving as much more than a temporary reservoir or holding tank for imported chemical species. It defines an immense atmospheric chemical reactor which is capable of modifying the chemical characteristics of select atmospheric constituents. This reactor has most likely been in place over geological time, and may have led to the chemical modulation of some trace species now found in ice cores. Reactive nitrogen has played a critical role in both establishing and in maintaining this reactor. © 2007 Elsevier Ltd. All rights reserved
Stub model for dephasing in a quantum dot
As an alternative to Buttiker's dephasing lead model, we examine a dephasing
stub. Both models are phenomenological ways to introduce decoherence in chaotic
scattering by a quantum dot. The difference is that the dephasing lead opens up
the quantum dot by connecting it to an electron reservoir, while the dephasing
stub is closed at one end. Voltage fluctuations in the stub take over the
dephasing role from the reservoir. Because the quantum dot with dephasing lead
is an open system, only expectation values of the current can be forced to
vanish at low frequencies, while the outcome of an individual measurement is
not so constrained. The quantum dot with dephasing stub, in contrast, remains a
closed system with a vanishing low-frequency current at each and every
measurement. This difference is a crucial one in the context of quantum
algorithms, which are based on the outcome of individual measurements rather
than on expectation values. We demonstrate that the dephasing stub model has a
parameter range in which the voltage fluctuations are sufficiently strong to
suppress quantum interference effects, while still being sufficiently weak that
classical current fluctuations can be neglected relative to the nonequilibrium
shot noise.Comment: 8 pages with 1 figure; contribution for the special issue of J.Phys.A
on "Trends in Quantum Chaotic Scattering
Associations of military divorce with mental, behavioral, and physical health outcomes
Background
Divorce has been linked with poor physical and mental health outcomes among civilians. Given the unique stressors experienced by U.S. service members, including lengthy and/or multiple deployments, this study aimed to examine the associations of recent divorce on health and military outcomes among a cohort of U.S. service members. Methods
Millennium Cohort participants from the first enrollment panel, married at baseline (2001–2003), and married or divorced at follow-up (2004–2006), (N = 29,314). Those divorced were compared to those who remained married for mental, behavioral, physical health, and military outcomes using logistic regression models. Results
Compared to those who remained married, recently divorced participants were significantly more likely to screen positive for new-onset posttraumatic stress disorder, depression, smoking initiation, binge drinking, alcohol-related problems, and experience moderate weight gain. However, they were also more likely be in the highest 15thpercentile of physical functioning, and be able to deploy within the subsequent 3-year period after divorce. Conclusions
Recent divorce among military members was associated with adverse mental health outcomes and risky behaviors, but was also associated with higher odds of subsequent deployment. Attention should be given to those recently divorced regarding mental health and substance abuse treatment and prevention strategies
Controlled Dephasing of Electrons by Non-Gaussian Shot Noise
In a 'controlled dephasing' experiment [1-3], an interferometer loses its
coherence due to entanglement with a controlled quantum system ('which path'
detector). In experiments that were conducted thus far in mesoscopic systems
only partial dephasing was achieved. This was due to weak interactions between
many detector electrons and the interfering electron, resulting in a Gaussian
phase randomizing process [4-10]. Here, we report the opposite extreme: a
complete destruction of the interference via strong phase randomization only by
a few electrons in the detector. The realization was based on interfering edge
channels (in the integer quantum Hall effect regime, filling factor 2) in a
Mach-Zehnder electronic interferometer, with an inner edge channel serving as a
detector. Unexpectedly, the visibility quenched in a periodic lobe-type form as
the detector current increased; namely, it periodically decreased as the
detector current, and thus the detector's efficiency, increased. Moreover, the
visibility had a V-shape dependence on the partitioning of the detector
current, and not the expected dependence on the second moment of the shot
noise, T(1-T), with T the partitioning. We ascribe these unexpected features to
the strong detector-interferometer coupling, allowing only 1-3 electrons in the
detector to fully dephase the interfering electron. Consequently, in this work
we explored the non-Gaussian nature of noise [11], namely, the direct effect of
the shot noise full counting statistics [12-15].Comment: 14 pages, 4 figure
Electron fractionalization induced dephasing in Luttinger liquids
Using the appropriate fractionalization mechanism, we correctly derive the
temperature (T) and interaction dependence of the electron lifetime in
Luttinger liquids. For strong enough interactions, we report that
, with being the standard Luttinger exponent; This
reinforces that electrons are {\it not} good quasiparticles. We immediately
emphasize that this is of importance for the detection of electronic
interferences in ballistic 1D rings and carbon nanotubes, inducing
``dephasing'' (strong reduction of Aharonov-Bohm oscillations).Comment: 5 pages, 1 figure (Final version for PRB Brief Report
Brolucizumab in Neovascular Age-Related Macular Degeneration and Diabetic Macular Edema: Ophthalmology and Diabetology Treatment Aspects.
Anti-vascular endothelial growth factor (anti-VEGF) therapies have become the standard of care in the treatment of neovascular age-related macular degeneration (nAMD) and diabetic macular edema (DME), resulting in a remarkable decrease in disease-related vision loss. However, the need for regular injections places a significant burden on patients, caregivers, and the healthcare system and improvements in vision may not be maintained long term. As a result of its drying potency and duration of action, brolucizumab, an intravitreal anti-VEGF therapy approved for the treatment of nAMD and DME, could decrease injection frequency for patients and provide an efficacious treatment; however, balancing its benefits and risks can be challenging. There have been reports of intraocular inflammation (IOI) in patients treated with brolucizumab, which, if left untreated, may result in severe vision loss. Recent evidence, however, indicates that early recognition of IOI and prompt and aggressive systemic corticosteroid treatment in response to posterior segment involvement can lead to favorable outcomes in these relatively rare but severe cases. A series of consensus meetings were conducted in 2022 between Swiss medical retina experts and diabetologists, discussing the current data for brolucizumab and exploring various challenges to its use, including the associated risk of IOI. The outcome is a collation of practical insights and guidance for ophthalmologists on the use of brolucizumab in patients with nAMD and DME, including patient selection and assessment, treatment regimen and monitoring, and the recognition and management of adverse events
- …