2,257 research outputs found

    Quiet engine program flight engine design study

    Get PDF
    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included

    The Bravyi-Kitaev transformation for quantum computation of electronic structure

    Get PDF
    Quantum simulation is an important application of future quantum computers with applications in quantum chemistry, condensed matter, and beyond. Quantum simulation of fermionic systems presents a specific challenge. The Jordan-Wigner transformation allows for representation of a fermionic operator by O(n) qubit operations. Here we develop an alternative method of simulating fermions with qubits, first proposed by Bravyi and Kitaev [S. B. Bravyi, A.Yu. Kitaev, Annals of Physics 298, 210-226 (2002)], that reduces the simulation cost to O(log n) qubit operations for one fermionic operation. We apply this new Bravyi-Kitaev transformation to the task of simulating quantum chemical Hamiltonians, and give a detailed example for the simplest possible case of molecular hydrogen in a minimal basis. We show that the quantum circuit for simulating a single Trotter time-step of the Bravyi-Kitaev derived Hamiltonian for H2 requires fewer gate applications than the equivalent circuit derived from the Jordan-Wigner transformation. Since the scaling of the Bravyi-Kitaev method is asymptotically better than the Jordan-Wigner method, this result for molecular hydrogen in a minimal basis demonstrates the superior efficiency of the Bravyi-Kitaev method for all quantum computations of electronic structure

    Pole structure of the Hamiltonian ζ\zeta-function for a singular potential

    Full text link
    We study the pole structure of the ζ\zeta-function associated to the Hamiltonian HH of a quantum mechanical particle living in the half-line R+\mathbf{R}^+, subject to the singular potential gx−2+x2g x^{-2}+x^2. We show that HH admits nontrivial self-adjoint extensions (SAE) in a given range of values of the parameter gg. The ζ\zeta-functions of these operators present poles which depend on gg and, in general, do not coincide with half an integer (they can even be irrational). The corresponding residues depend on the SAE considered.Comment: 12 pages, 1 figure, RevTeX. References added. Version to appear in Jour. Phys. A: Math. Ge

    Entropy, Dynamics and Instantaneous Normal Modes in a Random Energy Model

    Full text link
    It is shown that the fraction f of imaginary frequency instantaneous normal modes (INM) may be defined and calculated in a random energy model(REM) of liquids. The configurational entropy S and the averaged hopping rate among the states R are also obtained and related to f, with the results R~f and S=a+b*ln(f). The proportionality between R and f is the basis of existing INM theories of diffusion, so the REM further confirms their validity. A link to S opens new avenues for introducing INM into dynamical theories. Liquid 'states' are usually defined by assigning a configuration to the minimum to which it will drain, but the REM naturally treats saddle-barriers on the same footing as minima, which may be a better mapping of the continuum of configurations to discrete states. Requirements of a detailed REM description of liquids are discussed

    Honey bee foraging distance depends on month and forage type

    Get PDF
    To investigate the distances at which honey bee foragers collect nectar and pollen, we analysed 5,484 decoded waggle dances made to natural forage sites to determine monthly foraging distance for each forage type. Firstly, we found significantly fewer overall dances made for pollen (16.8 %) than for non-pollen, presumably nectar (83.2 %; P < 2.2 × 10−23). When we analysed distance against month and forage type, there was a significant interaction between the two factors, which demonstrates that in some months, one forage type is collected at farther distances, but this would reverse in other months. Overall, these data suggest that distance, as a proxy for forage availability, is not significantly and consistently driven by need for one type of forage over the other

    Vanishing Viscosity Limits and Boundary Layers for Circularly Symmetric 2D Flows

    Full text link
    We continue the work of Lopes Filho, Mazzucato and Nussenzveig Lopes [LMN], on the vanishing viscosity limit of circularly symmetric viscous flow in a disk with rotating boundary, shown there to converge to the inviscid limit in L2L^2-norm as long as the prescribed angular velocity α(t)\alpha(t) of the boundary has bounded total variation. Here we establish convergence in stronger L2L^2 and LpL^p-Sobolev spaces, allow for more singular angular velocities α\alpha, and address the issue of analyzing the behavior of the boundary layer. This includes an analysis of concentration of vorticity in the vanishing viscosity limit. We also consider such flows on an annulus, whose two boundary components rotate independently. [LMN] Lopes Filho, M. C., Mazzucato, A. L. and Nussenzveig Lopes, H. J., Vanishing viscosity limit for incompressible flow inside a rotating circle, preprint 2006

    Strong ellipticity and spectral properties of chiral bag boundary conditions

    Full text link
    We prove strong ellipticity of chiral bag boundary conditions on even dimensional manifolds. From a knowledge of the heat kernel in an infinite cylinder, some basic properties of the zeta function are analyzed on cylindrical product manifolds of arbitrary even dimension.Comment: 16 pages, LaTeX, References adde

    Heat-kernel expansion on non compact domains and a generalised zeta-function regularisation procedure

    Full text link
    Heat-kernel expansion and zeta function regularisation are discussed for Laplace type operators with discrete spectrum in non compact domains. Since a general theory is lacking, the heat-kernel expansion is investigated by means of several examples. It is pointed out that for a class of exponential (analytic) interactions, generically the non-compactness of the domain gives rise to logarithmic terms in the heat-kernel expansion. Then, a meromorphic continuation of the associated zeta function is investigated. A simple model is considered, for which the analytic continuation of the zeta function is not regular at the origin, displaying a pole of higher order. For a physically meaningful evaluation of the related functional determinant, a generalised zeta function regularisation procedure is proposed.Comment: Latex, 14 pages, no figures. The version to be published in JM

    The trace of the heat kernel on a compact hyperbolic 3-orbifold

    Full text link
    The heat coefficients related to the Laplace-Beltrami operator defined on the hyperbolic compact manifold H^3/\Ga are evaluated in the case in which the discrete group \Ga contains elliptic and hyperbolic elements. It is shown that while hyperbolic elements give only exponentially vanishing corrections to the trace of the heat kernel, elliptic elements modify all coefficients of the asymptotic expansion, but the Weyl term, which remains unchanged. Some physical consequences are briefly discussed in the examples.Comment: 11 page
    • …
    corecore