Abstract

We study the pole structure of the ζ\zeta-function associated to the Hamiltonian HH of a quantum mechanical particle living in the half-line R+\mathbf{R}^+, subject to the singular potential gx2+x2g x^{-2}+x^2. We show that HH admits nontrivial self-adjoint extensions (SAE) in a given range of values of the parameter gg. The ζ\zeta-functions of these operators present poles which depend on gg and, in general, do not coincide with half an integer (they can even be irrational). The corresponding residues depend on the SAE considered.Comment: 12 pages, 1 figure, RevTeX. References added. Version to appear in Jour. Phys. A: Math. Ge

    Similar works