40 research outputs found

    A first-in-human clinical study of a new SP-B and SP-C enriched synthetic surfactant (CHF5633) in preterm babies with respiratory distress syndrome

    Get PDF
    Objective CHF5633 (Chiesi Farmaceutici S.p.A., Parma, Italy) is the first fully synthetic surfactant enriched by peptide analogues of two human surfactant proteins. We planned to assess safety and tolerability of CHF5633 and explore preliminary efficacy. Design Multicentre cohort study. Patients Forty infants from 27+0 to 33+6 weeks gestation with respiratory distress syndrome requiring fraction of inspired oxygen (FiO2) ≥0.35 were treated with a single dose of CHF5633 within 48 hours after birth. The first 20 received 100 mg/kg and the second 20 received 200 mg/kg. Outcome measures Adverse events (AEs) and adverse drug reactions (ADRs) were monitored with complications of prematurity considered AEs if occurring after dosing. Systemic absorption and immunogenicity were assessed. Efficacy was assessed by change in FiO2 after dosing and need for poractant-alfa rescue. Results Rapid and sustained improvements in FiO2 were observed in 39 (98%) infants. One responded neither to CHF5633 nor two poractant-alfa doses. A total of 79 AEs were experienced by 19 infants in the 100 mg/kg cohort and 53 AEs by 20 infants in the 200 mg/kg cohort. Most AEs were expected complications of prematurity. Two unrelated serious AEs occurred in the second cohort. One infant died of necrotising enterocolitis and another developed viral bronchiolitis after discharge. The single ADR was an episode of transient endotracheal tube obstruction following a 200 mg/kg dose. Neither systemic absorption, nor antibody development to either peptide was detected. Conclusions Both CHF5633 doses were well tolerated and showed promising clinical efficacy profile. These encouraging data provide a basis for ongoing randomised controlled trials

    Growth Hormone Secretagogues Protect Mouse Cardiomyocytes from in vitro Ischemia/Reperfusion Injury through Regulation of Intracellular Calcium

    Get PDF
    Background: Ischemic heart disease is a leading cause of mortality. To study this disease, ischemia/reperfusion (I/R) models are widely used to mimic the process of transient blockage and subsequent recovery of cardiac coronary blood supply. We aimed to determine whether the presence of the growth hormone secretagogues, ghrelin and hexarelin, would protect/improve the function of heart from I/R injury and to examine the underlying mechanisms. Methodology/Principal Findings: Isolated hearts from adult male mice underwent 20 min global ischemia and 30 min reperfusion using a Langendorff apparatus. Ghrelin (10 nM) or hexarelin (1 nM) was introduced into the perfusion system either 10 min before or after ischemia, termed pre- and post-treatments. In freshly isolated cardiomyocytes from these hearts, single cell shortening, intracellular calcium ([Ca ] ) transients and caffeine-releasable sarcoplasmic reticulum (SR) Ca were measured. In addition, RT-PCR and Western blots were used to examine the expression level of GHS receptor type 1a (GHS-R1a), and phosphorylated phospholamban (p-PLB), respectively. Ghrelin and hexarelin pre- or post-treatments prevented the significant reduction in the cell shortening, [Ca ] transient amplitude and caffeine-releasable SR Ca content after I/R through recovery of p-PLB. GHS-R1a antagonists, [D-Lys3]-GHRP-6 (200 nM) and BIM28163 (100 nM), completely blocked the effects of GHS on both cell shortening and [Ca ] transients. Conclusion/Significance: Through activation of GHS-R1a, ghrelin and hexarelin produced a positive inotropic effect on ischemic cardiomyocytes and protected them from I/R injury probably by protecting or recovering p-PLB (and therefore SR Ca content) to allow the maintenance or recovery of normal cardiac contractility. These observations provide supporting evidence for the potential therapeutic application of ghrelin and hexarelin in patients with cardiac I/R injury

    Systemic Maternal Inflammation and Neonatal Hyperoxia Induces Remodeling and Left Ventricular Dysfunction in Mice

    Get PDF
    The impact of the neonatal environment on the development of adult cardiovascular disease is poorly understood. Systemic maternal inflammation is linked to growth retardation, preterm birth, and maturation deficits in the developing fetus. Often preterm or small-for-gestational age infants require medical interventions such as oxygen therapy. The long-term pathological consequences of medical interventions on an immature physiology remain unknown. In the present study, we hypothesized that systemic maternal inflammation and neonatal hyperoxia exposure compromise cardiac structure, resulting in LV dysfunction during adulthood.Pregnant C3H/HeN mice were injected on embryonic day 16 (E16) with LPS (80 µg/kg; i.p.) or saline. Offspring were placed in room air (RA) or 85% O(2) for 14 days and subsequently maintained in RA. Cardiac echocardiography, cardiomyocyte contractility, and molecular analyses were performed. Echocardiography revealed persistent lower left ventricular fractional shortening with greater left ventricular end systolic diameter at 8 weeks in LPS/O(2) than in saline/RA mice. Isolated cardiomyocytes from LPS/O(2) mice had slower rates of contraction and relaxation, and a slower return to baseline length than cardiomyocytes isolated from saline/RA controls. α-/β-MHC ratio was increased and Connexin-43 levels decreased in LPS/O(2) mice at 8 weeks. Nox4 was reduced between day 3 and 14 and capillary density was lower at 8 weeks of life in LPS/O(2) mice.These results demonstrate that systemic maternal inflammation combined with neonatal hyperoxia exposure induces alterations in cardiac structure and function leading to cardiac failure in adulthood and supports the importance of the intrauterine and neonatal milieu on adult health

    Propofol administration to the fetal–maternal unit reduces cardiac oxidative stress in preterm lambs subjected to prenatal asphyxia and cardiac arrest

    No full text
    BACKGROUND: Little is known about the effects of propofol on oxidative stress and its effect on key structures of the contractile apparatus as the myosin light chain 2 (MLC2) and the p38MAPK survival pathway in the preterm heart. We hypothesized that propofol administration could attenuate the hypoxic myocardial injury after birth asphyxia. METHODS: Pregnant ewes were randomized to receive either propofol or isoflurane anesthesia. A total of 44 late-preterm lambs were subjected to in utero umbilical cord occlusion (UCO), resulting in asphyxia and cardiac arrest, or sham treatment. After emergency cesarean delivery, each fetus was resuscitated, mechanically ventilated, and supported under anesthesia for 8 h using the same anesthetic as the one received by its mother. RESULTS: At 8h after UCO, occurrence of reactive oxygen species and activation of inducible nitric oxide synthase in the heart were lower in association with propofol anesthesia than with isoflurane. This was accompanied by less degradation of MLC2 but higher p38MAPK level and in echocardiography with a trend toward a higher median left ventricular fractional shortening. CONCLUSION: The use of propofol resulted in less oxidative stress and was associated with less cytoskeletal damage of the contractile apparatus than the use of isoflurane anesthesia

    Survival.

    No full text
    <p>Kaplan-Meier curves represent the 48 hour survival of preterm lambs which underwent surfactant inactivation when treated either with CHF 5633 (dotted line) or Poractant alfa (continuous line). Analysis by Gehan-Breslow-Wilcoxon test indicated a significant longer survival of lambs treated with CHF 5633 compared to Poractant alfa treated lambs (p<0.05).</p

    New Surfactant with SP-B and C Analogs Gives Survival Benefit after Inactivation in Preterm Lambs

    Get PDF
    <div><h3>Background</h3><p>Respiratory distress syndrome in preterm babies is caused by a pulmonary surfactant deficiency, but also by its inactivation due to various conditions, including plasma protein leakage. Surfactant replacement therapy is well established, but clinical observations and <em>in vitro</em> experiments suggested that its efficacy may be impaired by inactivation. A new synthetic surfactant (CHF 5633), containing synthetic surfactant protein B and C analogs, has shown comparable effects on oxygenation in ventilated preterm rabbits versus Poractant alfa, but superior resistance against inactivation <em>in vitro</em>. We hypothesized that CHF 5633 is also resistant to inactivation by serum albumin <em>in vivo</em>.</p> <h3>Methodology/Principal Findings</h3><p>Nineteen preterm lambs of 127 days gestational age (term = 150 days) received CHF 5633 or Poractant alfa and were ventilated for 48 hours. Ninety minutes after birth, the animals received albumin with CHF 5633 or Poractant alfa. Animals received additional surfactant if P<sub>a</sub>O<sub>2</sub> dropped below 100 mmHg. A pressure volume curve was done post mortem and markers of pulmonary inflammation, surfactant content and biophysiology, and lung histology were assessed. CHF 5633 treatment resulted in improved arterial pH, oxygenation and ventilation efficiency index. The survival rate was significantly higher after CHF 5633 treatment (5/7) than after Poractant alfa (1/8) after 48 hours of ventilation. Biophysical examination of the surfactant recovered from bronchoalveolar lavages revealed that films formed by CHF 5633-treated animals reached low surface tensions in a wider range of compression rates than films from Poractant alfa-treated animals.</p> <h3>Conclusions</h3><p>For the first time a synthetic surfactant containing both surfactant protein B and C analogs showed significant benefit over animal derived surfactant in an <em>in vivo</em> model of surfactant inactivation in premature lambs.</p> </div

    Cerebral inflammation and mobilization of the peripheral immune system following global hypoxia-ischemia in preterm sheep

    Get PDF
    BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is one of the most important causes of brain injury in preterm infants. Preterm HIE is predominantly caused by global hypoxia-ischemia (HI). In contrast, focal ischemia is most common in the adult brain and known to result in cerebral inflammation and activation of the peripheral immune system. These inflammatory responses are considered to play an important role in the adverse outcomes following brain ischemia. In this study, we hypothesize that cerebral and peripheral immune activation is also involved in preterm brain injury after global HI. METHODS: Preterm instrumented fetal sheep were exposed to 25 minutes of umbilical cord occlusion (UCO) (n = 8) at 0.7 gestation. Sham-treated animals (n = 8) were used as a control group. Brain sections were stained for ionized calcium binding adaptor molecule 1 (IBA-1) to investigate microglial proliferation and activation. The peripheral immune system was studied by assessment of circulating white blood cell counts, cellular changes of the spleen and influx of peripheral immune cells (MPO-positive neutrophils) into the brain. Pre-oligodendrocytes (preOLs) and myelin basic protein (MBP) were detected to determine white matter injury. Electro-encephalography (EEG) was recorded to assess functional impairment by interburst interval (IBI) length analysis. RESULTS: Global HI resulted in profound activation and proliferation of microglia in the hippocampus, periventricular and subcortical white matter. In addition, non-preferential mobilization of white blood cells into the circulation was observed within 1 day after global HI and a significant influx of neutrophils into the brain was detected 7 days after the global HI insult. Furthermore, global HI resulted in marked involution of the spleen, which could not be explained by increased splenic apoptosis. In concordance with cerebral inflammation, global HI induced severe brain atrophy, region-specific preOL vulnerability, hypomyelination and persistent suppressed brain function. CONCLUSIONS: Our data provided evidence that global HI in preterm ovine fetuses resulted in profound cerebral inflammation and mobilization of the peripheral innate immune system. These inflammatory responses were paralleled by marked injury and functional loss of the preterm brain. Further understanding of the interplay between preterm brain inflammation and activation of the peripheral immune system following global HI will contribute to the development of future therapeutic interventions in preterm HIE

    Study design.

    No full text
    <p>Preterm lambs received a 200 mg/kg bodyweight intra-tracheal dose of either Poractant alfa or CHF 5633. Ninety minutes after birth a mixture consisting of 9.4 mg/kg human serum albumin and either 100 mg/kg Poractant alfa or 100 mg/kg CHF 5633 was given intra-tracheally to simulate surfactant inactivation. If P<sub>a</sub>O<sub>2</sub> dropped below 100 mmHg, the lambs received an additional dose of either 200 mg/kg Poractant alfa or 200 mg/kg CHF 5633 every two hours until the P<sub>a</sub>O<sub>2</sub> increased above the 100 mmHg threshold. 48 hours after birth the lambs were euthanized.</p
    corecore