106 research outputs found
Centering a DDR Strobe in the Middle of a Data Packet
The Orion CEV Northstar ASIC (application- specific integrated circuit) project required a DDR (double data rate) memory bus driver/receiver (DDR PHY block) to interface with external DDR memory. The DDR interface (JESD79C) is based on a source synchronous strobe (DQS\) that is sent along with each packet of data (DQ). New data is provided concurrently with each edge of strobe and is sent irregularly. In order to capture this data, the strobe needs to be delayed and used to latch the data into a register. A circuit solves the need for training a DDR PRY block by incorporating a PVT-compensated delay element in the strobe path. This circuit takes an external reference clock signal and uses the regular clock to calibrate a known delay through a data path. The compensated delay DQS signal is then used to capture the DQ data in a normal register. This register structure can be configured as a FIFO (first in first out), in order to transfer data from the DDR domain to the system clock domain. This design is different in that it does not rely upon the need for training the system response, nor does it use a PLL (phase locked loop) or a DLL (delay locked loop) to provide an offset of the strobe signal. The circuit is created using standard ASIC building blocks, plus the PVT (process, voltage, and temperature) compensated delay line. The design uses a globally available system clock as a reference, alleviating the need to operate synchronously with the remote memory. The reference clock conditions the PVT compensated delay line to provide a pre-determined amount of delay to any data signal that passes through this delay line. The delay line is programmed in degrees of offset, so that one could think of the clock period representing 360deg of delay. In an ideal environment, delaying the strobe 1/4 of a clock cycle (90deg) would place the strobe in the middle of the data packet. This delayed strobe can then be used to clock the data into a register, satisfying setup and hold requirements of the system
Prediction of ceramic stereolithography resin sensitivity from theory and measurement of diffusive photon transport
A general, quantitative relationship between the photon-transport mean free path (l*)(l*) and resin sensitivity (DP)(DP) in multiple-scattering alumina/monomer suspensions formulated for ceramic stereolithography is presented and experimentally demonstrated. A Mie-theory-based computational method with structure factor contributions to determine l*l* was developed. Planar-source diffuse transmittance experiments were performed on monodisperse and bimodal polystyrene/water and alumina/monomer systems to validate this computational tool. The experimental data support the application of this l*l* calculation method to concentrated suspensions composed of nonaggregating particles of moderately aspherical shape and log-normal size distribution. The values of DPDP are shown to be approximately five times that of l*l* in the tested ceramic stereolithography suspensions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87411/2/024902_1.pd
Novel measurement system for respiratory aerosols and droplets in indoor environments
The SARS-CoV-2 pandemic has created a great demand for a better understanding of the spread of viruses in indoor environments. A novel measurement system consisting of one portable aerosol-emitting mannequin (emitter) and a number of portable aerosol-absorbing mannequins (recipients) was developed that can measure the spread of aerosols and droplets that potentially contain infectious viruses. The emission of the virus from a human is simulated by using tracer particles solved in water. The recipients inhale the aerosols and droplets and quantify the level of solved tracer particles in their artificial lungs simultaneously over time. The mobile system can be arranged in a large variety of spreading scenarios in indoor environments and allows for quantification of the infection probability due to airborne virus spreading. This study shows the accuracy of the new measurement system and its ability to compare aerosol reduction measures such as regular ventilation or the use of a room air purifier
Structure of the mammalian antimicrobial peptide Bac7(1-16) bound within the exit tunnel of a bacterial ribosome
Proline-rich antimicrobial peptides (PrAMPs) produced as part of the innate immune response of animals, insects and plants represent a vast, untapped resource for the treatment of multidrug-resistant bacterial infections. PrAMPs such as oncocin or bactenecin-7 (Bac7) interact with the bacterial ribosome to inhibit translation, but their supposed specificity as inhibitors of bacterial rather than mammalian protein synthesis remains unclear, despite being key to developing drugs with low toxicity. Here, we present crystal structures of the Thermus thermophilus 70S ribosome in complex with the first 16 residues of mammalian Bac7, as well as the insect-derived PrAMPs metalnikowin I and pyrrhocoricin. The structures reveal that the mammalian Bac7 interacts with a similar region of the ribosome as insect-derived PrAMPs. Consistently, Bac7 and the oncocin derivative Onc112 compete effectively with antibiotics, such as erythromycin, which target the ribosomal exit tunnel. Moreover, we demonstrate that Bac7 allows initiation complex formation but prevents entry into the elongation phase of translation, and show that it inhibits translation on both mammalian and bacterial ribosomes, explaining why this peptide needs to be stored as an inactive pro-peptide. These findings highlight the need to consider the specificity of PrAMP derivatives for the bacterial ribosome in future drug development efforts
Confronting Arctic Troposphere, Clouds, and Surface Energy Budget Representations in Regional Climate Models With Observations
A coordinated regional climate model (RCM) evaluation and intercomparison project based on observations from a July–October 2014 trans‐Arctic Ocean field experiment (ACSE‐Arctic Clouds during Summer Experiment) is presented. Six state‐of‐the‐art RCMs were constrained with common reanalysis lateral boundary forcing and upper troposphere nudging techniques to explore how the RCMs represented the evolution of the surface energy budget (SEB) components and their relation to cloud properties. We find that the main reasons for the modeled differences in the SEB components are a direct consequence of the RCM treatment of cloud and cloud‐radiative interactions. The RCMs could be separated into groups by their overestimation or underestimation of cloud liquid. While radiative and turbulent heat flux errors were relatively large, they often invoke compensating errors. In addition, having the surface sea‐ice concentrations constrained by the reanalysis or satellite observations limited how errors in the modeled radiative fluxes could affect the SEB and ultimately the surface evolution and its coupling with lower tropospheric mixing and cloud properties. Many of these results are consistent with RCM biases reported in studies over a decade ago. One of the six models was a fully coupled ocean‐ice‐atmosphere model. Despite the biases in overestimating cloud liquid, and associated SEB errors due to too optically thick clouds, its simulations were useful in understanding how the fully coupled system is forced by, and responds to, the SEB evolution. Moving forward, we suggest that development of RCM studies need to consider the fully coupled climate system
Recommended from our members
Kinetic and Spectroscopic Analysis of the Inactivating Effects of Nitric Oxide on the Individual Components of Azotobacter vinelandii Nitrogenase
The effects of nitric oxide (NO) on the individual components of Azotobacter vinelandii
nitrogenase have been examined by kinetic and spectroscopic methods. Incubation of the Fe protein (Av2)
for 1 h with stoichiometries of 4- and 8-fold molar excesses of NO to Av2 dimer resulted in a complete
loss of activity of Av2 in C2H2-reduction assays. The kinetics of inactivation indicated that the minimum
stoichiometry of NO to Av2 required to fully inactivate Av2 lies between 1 and 2. The rate of inactivation
of Av2 activity by NO was stimulated up to 2-fold by the presence of MgATP and MgADP but was
unaffected by the presence of sodium dithionite. Unexpectedly, complete inactivation of Av2 by low ratios
of NO to Av2 also resulted in a complete loss of its ability to bind MgATP and MgADP. UV-visible
spectroscopy indicated that the effect of NO on Av2 involves oxidation of the [4Fe-4S] center. EPR
spectroscopy revealed that the loss of activity during inactivation of Av2 by NO correlated with the loss
of the S = 1/2 and S = 3/2 signals. Appearance of the classical and intense iron-nitrosyl signal (g = 2.03)
was only observed when Av2 was incubated with large molar excesses of NO and the appearance of this
signal did not correlate with the loss of Av2 activity. The effects of NO on the MoFe protein (Avl) were
more complex than for Av2. A time-dependent inactivation of Avl activity (C2H2 reduction) was observed
which required considerably higher concentrations of NO than those required to inactivate Av2 (up to 10
P a ) . In addition, the effects of NO on Avl were significantly affected by the presence of sodium dithionite.
In fact, kinetic evidence suggests that an Avl-catalyzed, NO-dependent consumption of dithionite occurs
before Avl is inactivated by NO. A correlation between UV-visible and EPR spectral features and the
extent of NO inactivation has been established. The inactivation of either nitrogenase component by NO
did not lead to aggregation or dissolution into their constitutive subunits. However, NO inactivation did
cause changes in both proteins since neither NO-treated protein inhibited C2H2-reducing activity in assays
containing equimolar concentrations of untreated protein. The effects of NO on both nitrogenase components
are interpreted in terms of the known reactivity of NO with Fe-S centers
Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family
Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes
3D printed, single-use bioreactor with integrated inline sensors for microbial and mammalian cell cultivation : a case study
The development of upstream bioprocesses necessitates small, instrumented bioreactors for investigating and optimizing production processes in a cost-effective manner. Due to advances in both the equipment and the materials used in additive manufacturing, 3D printing of customized bioreactors is now in the realm of possibilities. In this study, a small-scale 3D printed bioreactor suitable for mammalian and microbial cultivations was developed, featuring a working volume of 90 mL, inline pH and dissolved oxygen probes and a levitating magnetic stirrer. Aeration channels and a sampling port were printed directly into the vessel walls. Additionally, the vessel was equipped with a 3D printed customizable optical biomass-sensor. The bioreactor’s performance was evaluated through technical characterization and proof of concept cultivations, demonstrating that mixing time and oxygen mass transfer were sufficient for cultivating mammalian as well as microbial cells at high cell densities. Specifically, an Escherichia coli fed-batch cultivation achieved a maximum OD600 of 204. Furthermore, a fed-batch cultivation of an IgG antibody-producing Chinese hamster ovary cell line reached a peak viable cell density of 10.2 × 106 cells mL−1 and a maximum product titer of 2.75 g L−1. Using a three-parameter fit, the inline biomass signal could be correlated to the corresponding offline values with satisfactory accuracy, making it possible to monitor cell growth in real-time
Beyond fossil fuel–driven nitrogen transformations
How much carbon does it take to make nitric acid? The counterintuitive answer nowadays is quite a lot. Nitric acid is manufactured by ammonia oxidation, and all the hydrogen to make ammonia via the Haber-Bosch process comes from methane. That's without even accounting for the fossil fuels burned to power the process. Chen et al. review research prospects for more sustainable routes to nitrogen commodity chemicals, considering developments in enzymatic, homogeneous, and heterogeneous catalysis, as well as electrochemical, photochemical, and plasma-based approaches
- …