105 research outputs found

    Testing the human factor: Radiocarbon dating the first peoples of the South Pacific

    Get PDF
    Archaeologists have long debated the origins and mode of dispersal of the immediate predecessors of all Polynesians and many populations in Island Melanesia. Such debates are inextricably linked to a chronological framework provided, in part, by radiocarbon dates. Human remains have the greatest potential for providing answers to many questions pertinent to these debates. Unfortunately, bone is one of the most complicated materials to date reliably because of bone degradation, sample pretreatment and diet. This is of particular concern in the Pacific where humidity contributes to the rapid decay of bone protein, and a combination of marine, reef, C₄, C₃ and freshwater foods complicate the interpretation of ¹⁴C determinations. Independent advances in bone pretreatment, isotope multivariate modelling and radiocarbon calibration techniques provide us, for the first time, with the tools to obtain reliable calibrated ages for Pacific burials. Here we present research that combines these techniques, enabling us to re-evaluate the age of burials from key archaeological sites in the Pacific

    Citizen science identifies the effects of nitrogen dioxide and other environmental drivers on tar spot of sycamore

    Get PDF
    Elevated sulphur dioxide (SO2) concentrations were the major cause of the absence of symptoms of tar spot (Rhytisma acerinum) of sycamore (Acer pseudoplatanus), in urban areas in the 1970s. The subsequent large decline in SO2 concentrations has not always been accompanied by increased tar spot symptoms, for reasons that have remained unresolved. We used a large citizen science survey, providing over 1000 records across England, to test two competing hypotheses proposed in earlier studies. We were able to demonstrate the validity of both hypotheses; tar spot symptoms were reduced where there were fewer fallen leaves as a source of inoculum, and elevated nitrogen dioxide concentrations reduced tar spot symptoms above a threshold concentration of about 20 μg m-3. Symptom severity was also lower at sites with higher temperature and lower rainfall. Our findings demonstrate the power of citizen science to resolve competing hypotheses about the impacts of air pollution and other environmental drivers

    Interplay of brain structure and function in neonatal congenital heart disease

    Get PDF
    Objective: To evaluate whether structural and microstructural brain abnormalities in neonates with congenital heart disease (CHD) correlate with neuronal network dysfunction measured by analysis of EEG connectivity. Methods: We studied a prospective cohort of 20 neonates with CHD who underwent continuous EEG monitoring before surgery to assess functional brain maturation and network connectivity, structural magnetic resonance imaging (MRI) to determine the presence of brain injury and structural brain development, and diffusion tensor MRI to assess brain microstructural development. Results: Neonates with MRI brain injury and delayed structural and microstructural brain development demonstrated significantly stronger high-frequency (beta and gamma frequency band) connectivity. Furthermore, neonates with delayed microstructural brain development demonstrated significantly weaker low-frequency (delta, theta, alpha frequency band) connectivity. Neonates with brain injury also displayed delayed functional maturation of EEG background activity, characterized by greater background discontinuity. Interpretation: These data provide new evidence that early structural and microstructural developmental brain abnormalities can have immediate functional consequences that manifest as characteristic alterations of neuronal network connectivity. Such early perturbations of developing neuronal networks, if sustained, may be responsible for the persistent neurocognitive impairment prevalent in adolescent survivors of CHD. These foundational insights into the complex interplay between evolving brain structure and function may have relevance for a wide spectrum of neurological disorders manifesting early developmental brain injury
    corecore