293 research outputs found
Inferior frontal oscillations reveal visuo-motor matching for actions and speech: evidence from human intracranial recordings.
The neural correspondence between the systems responsible for the execution and recognition of actions has been suggested both in humans and non-human primates. Apart from being a key region of this visuo-motor observation-execution matching (OEM) system, the human inferior frontal gyrus (IFG) is also important for speech production. The functional overlap of visuo-motor OEM and speech, together with the phylogenetic history of the IFG as a motor area, has led to the idea that speech function has evolved from pre-existing motor systems and to the hypothesis that an OEM system may exist also for speech. However, visuo-motor OEM and speech OEM have never been compared directly. We used electrocorticography to analyze oscillations recorded from intracranial electrodes in human fronto-parieto-temporal cortex during visuo-motor (executing or visually observing an action) and speech OEM tasks (verbally describing an action using the first or third person pronoun). The results show that neural activity related to visuo-motor OEM is widespread in the frontal, parietal, and temporal regions. Speech OEM also elicited widespread responses partly overlapping with visuo-motor OEM sites (bilaterally), including frontal, parietal, and temporal regions. Interestingly a more focal region, the inferior frontal gyrus (bilaterally), showed both visuo-motor OEM and speech OEM properties independent of orolingual speech-unrelated movements. Building on the methodological advantages in human invasive electrocorticography, the present findings provide highly precise spatial and temporal information to support the existence of a modality-independent action representation system in the human brain that is shared between systems for performing, interpreting and describing actions
Temporal lobe epilepsy and postural orthostatic tachycardia syndrome (POTS)
We describe a 20-year-old woman suffering from right temporal epilepsy, behavioral disorder, and a complaint of paroxysmal palpitations accompanied by anxiety. Detailed cardiac evaluation revealed that the palpitations were due to episodes of marked sinus tachycardia secondary to a concomitant postural orthostatic tachycardia syndrome (POTS) and not of psychogenic origin as initially thought. Treatment with a beta-blocker resulted in the disappearance of palpitations and the associated anxiety. This is the first report of the coexistence of partial epilepsy and POTS. The recognition of such a syndrome in epileptic patients is important in order to offer appropriate therapy
Direction-specific motion blindness induced by focal stimulation of human extrastriate cortex
Motion blindness (MB) or akinetopsia is the selective disturbance of visual motion perception while other features of the visual scene such as colour and shape are normally perceived. Chronic and transient forms of MB are characterized by a global deficit of direction discrimination (pandirectional), which is generally assumed to result from damage to, or interference with, the motion complex MT+/V5. However, the most characteristic feature of primate MT-neurons is not their motion specificity, but their preference for one direction of motion (direction specificity). Here, we report that focal electrical stimulation in the human posterior temporal lobe selectively impaired the perception of motion in one direction while the perception of motion in other directions was completely normal (unidirectional MB). In addition, the direction of MB was found to depend on the brain area stimulated. It is argued that direction specificity for visual motion is not only represented at the single neuron level, but also in much larger cortical units
Functional MRI with simultaneous EEG recording: feasibility and application to motor and visual activation
The possibility of combining the high spatial resolution of functional magnetic resonance imaging (fMRI) with the high temporal resolution of electroencephalography (EEG) may provide a new tool in cognitive neurophysiology, as well as in clinical applications such as epilepsy. However, the simultaneous recording of EEG and fMRI raises important practical problems: 1) the patients' safety, in particular the risk of skin burns due to electrodes heating; 2) the impairment of the EEG recording by the static magnetic field, as well as by RF and magnetic field gradients used during MRI; and 3) the quality of MR images, which may be affected by the presence of conductors and electronic devices in the MRI bore. Here we present our experiences on 19 normal volunteers who underwent combined fMRI and 16-channel EEG examination. Consistent with previous reports, safety could be assured when performing EEG recordings during fMRI acquisition. Electrophysiological signals recorded with surface EEG were similar inside and outside the 1.5 T magnet. Furthermore, fMRI using motor or visual tasks revealed similar areas of activation when performed with and without 16-channel EEG recording. J. Magn. Reson. Imaging 2001;13:943-948
Neutron and X-ray evidence of charge melting in ferromagnetic layered colossal magnetoresistance manganites
Recent x-ray and neutron scattering studies have revealed static diffuse scattering due to polarons in the paramagnetic phase of the colossal magnetoresistive manganites La2-2xSr1+2xMn2O7, with x = 0.40 and 0.44. We show that the polarons exhibit short-range incommensurate correlations that grow with decreasing temperature, but disappear abruptly at the combined ferromagnetic and metal-insulator transition in the x = 0.40 system because of the sudden charge delocalization, while persisting at low temperature in the antiferromagnetic x = 0.44 system. The "melting" of the polaron ordering as we cool through T-C occurs with the collapse of the polaron scattering itself in the x = 0.40 system. This short-range polaron order is characterized by an ordering wave vector q = (0.3,0,1) that is almost independent of x for x greater than or equal to 0.38, and is consistent with a model of disordered stripes. (C) 2001 American Institute of Physics
MRI, (1)H-MRS, and functional MRI during and after prolonged nonconvulsive seizure activity
Various structural and functional changes, such as focal edema, blood flow, and metabolism, occur in the cerebral cortex after focal status epilepticus. These changes can be assessed noninvasively by means of MRI techniques, such as fluid-attenuated inversion recovery (FLAIR), EEG-triggered functional MRI (EEG-fMRI), and proton MR spectroscopy (MRS)
Frequency domain EEG source localization of ictal epileptiform activity in patients with partial complex epilepsy of temporal lobe origin
The aim of this study was to investigate whether EEG source localization in the frequency domain, using the FFT dipole approximation (Lehmann, D. and Michel, C.M. Electroenceph. clin. Neurophysiol., 1990, 76: 271-276), would be useful for quantifying the frequency content of epileptic seizure activity. Between one and 7 extracranially recorded seizures were analyzed in each of 7 patients with mesolimbic epilepsy, who were seizure-free after temporal lobe resection. The full scalp frequency spectrum for the first 4 s after seizure onset, as well as for subsequent periods, was determined. Power peaks in the spectra were identified, and an instant dipole fit was performed for the frequencies corresponding to these peaks. Ictal frequencies, ranging between 3.5 and 8.5 Hz, showed a variable degree of stability over time in the different patients. For a particular frequency, dipole results were similar during the different phases of seizure development. In patients with more than one prominent frequency, dipole results for the different frequencies were similar. Dipole results were also similar between patients. We conclude that dipole localization of dominant frequencies, as obtained from full scalp FFT analysis, gives quite reproducible results for seizures originating in the mesial temporal area. The method may become a useful tool for the pre-surgical identification of patients with mesolimbic epilepsy
Visual activity in the human frontal eye field
Although visual information processing in the monkey frontal eye field (FEF) has been well demonstrated, the contribution of its human homologue to vision is still unknown. Here we report a study of intracranial visual evoked potentials (VEPs) recorded from the human FEF which was identified by electrical cortical stimulation. Electrical stimulations and EEG recordings were carried out via subdural grid electrodes placed over the frontal cortex in three epileptic patients. Evoked eye movements were mainly horizontal and always directed to the hemispace contralateral to the stimulation site. Intracranial VEPs showed responses predominately to stimuli in the contralateral visual field. Our findings demonstrate a close relationship between the direction of the electrically elicited eye movements and the visual stimulus location which predominantly leads to neural responses in the FEF. These findings provide evidence for the functional role of the human FEF in the analysis of visual stimuli from the contralateral visual field as well as in the generation of eye movements towards these conspicuous targets
- …