1,504 research outputs found

    Polarons in semiconductor quantum-dots and their role in the quantum kinetics of carrier relaxation

    Full text link
    While time-dependent perturbation theory shows inefficient carrier-phonon scattering in semiconductor quantum dots, we demonstrate that a quantum kinetic description of carrier-phonon interaction predicts fast carrier capture and relaxation. The considered processes do not fulfill energy conservation in terms of free-carrier energies because polar coupling of localized quantum-dot states strongly modifies this picture.Comment: 6 pages, 6 figures, accepted for publication in Phys.Rev.

    Influence of carrier-carrier and carrier-phonon correlations on optical absorption and gain in quantum-dot systems

    Full text link
    A microscopic theory is used to study the optical properties of semiconductor quantum dots. The dephasing of a coherent excitation and line-shifts of the interband transitions due to carrier-carrier Coulomb interaction and carrier-phonon interaction are determined from a quantum kinetic treatment of correlation processes. We investigate the density dependence of both mechanisms and clarify the importance of various dephasing channels involving the localized and delocalized states of the system.Comment: 12 pages, 10 figure

    Relaxation properties of the quantum kinetics of carrier-LO-phonon interaction in quantum wells and quantum dots

    Full text link
    The time evolution of optically excited carriers in semiconductor quantum wells and quantum dots is analyzed for their interaction with LO-phonons. Both the full two-time Green's function formalism and the one-time approximation provided by the generalized Kadanoff-Baym ansatz are considered, in order to compare their description of relaxation processes. It is shown that the two-time quantum kinetics leads to thermalization in all the examined cases, which is not the case for the one-time approach in the intermediate-coupling regime, even though it provides convergence to a steady state. The thermalization criterion used is the Kubo-Martin-Schwinger condition.Comment: 7 pages, 8 figures, accepted for publication in Phys. Rev.

    Repetitive proteins from the flagellar cytoskeleton of African trypanosomes are diagnostically useful antigens

    Get PDF
    Trypanosome infection of mammalian hosts leads, within days, to a strong early response against a small, distinct number of parasite proteins. One of these proteins is the variable surface glycoprotein (VSG). Most of the others are apparently non-variable, intracellular trypanosome proteins. Two of these antigens I2 and I17 are now characterized at the molecular level. Both exhibit a highly repetitive amino acid sequence organization, but they show no sequence similarity either to each other or to any other proteins known to date. Preliminary serological analyses indicate that both allow the early, sensitive and specific detection of infections with different species of trypanosomatids, making them interesting candidates for the development of diagnostic tools for trypanosomiasis detectio

    Many-Body Effects in Semiconductor Quantum Dots

    Get PDF

    Cytoskeleton-associated antigens from African trypanosomes are recognized by self-reactive antibodies of uninfected mice

    Get PDF
    Serum from uninfected mice of different strains, as well as from germ-free animals, contains antibodies which react specifically with at least two trypanosomal proteins, I/6 and MARP1. These antibody populations are highly specific for the respective proteins, are of similar affinity as hyperimmune antibodies, and consist of IgM as well as IgG isotypes. Hyperimmune antibody raised against the cross-reacting trypanosomal protein I/6 detects a 60 kDa protein in mouse 3T6 cells, which is a component of the fibroblast cytoskeleto

    Cupiennin 1a exhibits a remarkably broad, non-stereospecific cytolytic activity on bacteria, protozoan parasites, insects, and human cancer cells

    Get PDF
    Cupiennin 1a, a cytolytic peptide isolated from the venom of the spider Cupiennius salei, exhibits broad membranolytic activity towards bacteria, trypanosomes, and plasmodia, as well as human blood and cancer cells. In analysing the cytolytic activity of synthesised all-d- and all-l-cupiennin 1a towards pro- and eukaryotic cells, a stereospecific mode of membrane destruction could be excluded. The importance of negatively charged sialic acids on the outer leaflet of erythrocytes for the binding and haemolytic activity of l-cupiennin 1a was demonstrated. Reducing the overall negative charges of erythrocytes by partially removing their sialic acids or by protecting them with tri- or pentalysine results in reduced haemolytic activity of the peptid

    Unusually large enhancement of thermopower in an electric field induced two-dimensional electron gas

    Full text link
    Two-dimensionally confined electrons showing unusually large thermopower (S) have attracted attention as a potential approach for developing high performance thermoelectric materials. However, enhanced S has never been observed in electric field induced two-dimensional electron gas (2DEG). Here we demonstrate electric field modulation of S for a field effect transistor (FET) fabricated on a SrTiO3 crystal using a water-infiltrated nanoporous glass as the gate insulator. An electric field application confined carrier electrons up to ~2E15 /cm^2 in an extremely thin (~2 nm) 2DEG. Unusually large enhancement of |S| was observed when the sheet carrier concentration exceeded 2.5E14 /cm^2, and it modulated from ~600 (~2E15 /cm^2) to ~950 {\mu}V/K (~8E14 /cm^2), which were approximately five times larger than those of the bulk, clearly demonstrating that an electric field induced 2DEG provides unusually large enhancement of |S|.Comment: 20 pages including 4 figures and Supporting Information, Advanced Materials (in press

    Excitation-induced energy shifts in the optical gain spectra of InN quantum dots

    Get PDF
    A microscopic theory for the optical absorption and gain spectra of InN quantum-dot systems is used to study the combined influence of material properties and interaction-induced effects. Atomistic tight-binding calculations for the single-particle properties of the self-assembled quantum-dot and wetting-layer system are used in conjunction with a many-body description of Coulomb interaction and carrier phonon interaction. We analyze the carrier-density and temperature dependence of strong excitation-induced energy shifts of the dipole-allowed quantum-dot transitions.(C) 2009 American Institute of Physics. (10.1063/1.3213543
    corecore