893 research outputs found

    A Systematic Study of Neutrino Mixing and CP Violation from Lepton Mass Matrices with Six Texture Zeros

    Full text link
    We present a systematic study of 400 combinations of the charged lepton and neutrino mass matrices with six vanishing entries or texture zeros. Only 24 of them, which can be classified into a few distinct categories, are found to be compatible with current neutrino oscillation data at the 3σ3\sigma level. A peculiar feature of the lepton mass matrices in each category is that they have the same phenomenological consequences. Taking account of a simple seesaw scenario for six parallel patterns of the charged lepton and Dirac neutrino mass matrices with six zeros, we show that it is possible to fit the experimental data at or below the 2σ2\sigma level. In particular, the maximal atmospheric neutrino mixing can be reconciled with a strong neutrino mass hierarchy in the seesaw case. Numerical predictions are also obtained for the neutrino mass spectrum, flavor mixing angles, CP-violating phases and effective masses of the tritium beta decay and the neutrinoless double beta decay.Comment: 35 pages, 15 figures, minor change

    Optimal Power Allocation for Two-Way Decode-and-Forward OFDM Relay Networks

    Full text link
    This paper presents a novel two-way decode-and-forward (DF) relay strategy for Orthogonal Frequency Division Multiplexing (OFDM) relay networks. This DF relay strategy employs multi-subcarrier joint channel coding to leverage frequency selective fading, and thus can achieve a higher data rate than the conventional per-subcarrier DF relay strategies. We further propose a low-complexity, optimal power allocation strategy to maximize the data rate of the proposed relay strategy. Simulation results suggest that our strategy obtains a substantial gain over the per-subcarrier DF relay strategies, and also outperforms the amplify-and-forward (AF) relay strategy in a wide signal-to-noise-ratio (SNR) region.Comment: 5 pages, 2 figures, accepted by IEEE ICC 201

    Chain of Thought Explanation for Dialogue State Tracking

    Full text link
    Dialogue state tracking (DST) aims to record user queries and goals during a conversational interaction achieved by maintaining a predefined set of slots and their corresponding values. Current approaches decide slot values opaquely, while humans usually adopt a more deliberate approach by collecting information from relevant dialogue turns and then reasoning the appropriate values. In this work, we focus on the steps needed to figure out slot values by proposing a model named Chain-of-Thought-Explanation (CoTE) for the DST task. CoTE, which is built on the generative DST framework, is designed to create detailed explanations step by step after determining the slot values. This process leads to more accurate and reliable slot values. More-over, to improve the reasoning ability of the CoTE, we further construct more fluent and high-quality explanations with automatic paraphrasing, leading the method CoTE-refined. Experimental results on three widely recognized DST benchmarks-MultiWOZ 2.2, WoZ 2.0, and M2M-demonstrate the remarkable effectiveness of the CoTE. Furthermore, through a meticulous fine-grained analysis, we observe significant benefits of our CoTE on samples characterized by longer dialogue turns, user responses, and reasoning steps

    Resilient Practical Test-Time Adaptation: Soft Batch Normalization Alignment and Entropy-driven Memory Bank

    Full text link
    Test-time domain adaptation effectively adjusts the source domain model to accommodate unseen domain shifts in a target domain during inference. However, the model performance can be significantly impaired by continuous distribution changes in the target domain and non-independent and identically distributed (non-i.i.d.) test samples often encountered in practical scenarios. While existing memory bank methodologies use memory to store samples and mitigate non-i.i.d. effects, they do not inherently prevent potential model degradation. To address this issue, we propose a resilient practical test-time adaptation (ResiTTA) method focused on parameter resilience and data quality. Specifically, we develop a resilient batch normalization with estimation on normalization statistics and soft alignments to mitigate overfitting and model degradation. We use an entropy-driven memory bank that accounts for timeliness, the persistence of over-confident samples, and sample uncertainty for high-quality data in adaptation. Our framework periodically adapts the source domain model using a teacher-student model through a self-training loss on the memory samples, incorporating soft alignment losses on batch normalization. We empirically validate ResiTTA across various benchmark datasets, demonstrating state-of-the-art performance

    Dual-Frequency Planar Inverted F-L-Antenna (PIFLA) for WLAN and Short Range Communication Systems

    Get PDF
    The design and analysis is presented of a low profile and dualfrequency inverted L-F antenna for WLAN and short range wireless communications, providing a compromise between size reduction and attainable bandwidth. The optimum (minimized) volume of 30 30 8 mm of the proposed antenna gives 8% bandwidth at lower resonant mode of 2400 MHz, while at the higher resonant mode of 5500 MHz a bandwidth of 12.2% is obtained. Both the simulated and measured characteristics of the proposed antenna are shown

    Refined Topological Vertex and Instanton Counting

    Full text link
    It has been proposed recently that topological A-model string amplitudes for toric Calabi-Yau 3-folds in non self-dual graviphoton background can be caluculated by a diagrammatic method that is called the ``refined topological vertex''. We compute the extended A-model amplitudes for SU(N)-geometries using the proposed vertex. If the refined topological vertex is valid, these computations should give rise to the Nekrasov's partition functions of N=2 SU(N) gauge theories via the geometric engineering. In this article, we verify the proposal by confirming the equivalence between the refined A-model amplitude and the K-theoretic version of the Nekrasov's partition function by explicit computation.Comment: 22 pages, 6 figures, minor correction
    corecore