387 research outputs found

    A study of transport suppression in an undoped AlGaAs/GaAs quantum dot single-electron transistor

    Full text link
    We report a study of transport blockade features in a quantum dot single-electron transistor, based on an undoped AlGaAs/GaAs heterostructure. We observe suppression of transport through the ground state of the dot, as well as negative differential conductance at finite source-drain bias. The temperature and magnetic field dependence of these features indicate the couplings between the leads and the quantum dot states are suppressed. We attribute this to two possible mechanisms: spin effects which determine whether a particular charge transition is allowed based on the change in total spin, and the interference effects that arise from coherent tunneling of electrons in the dot

    Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor

    Full text link
    Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena due to their charge stability and robust electronic properties after thermal cycling. However these devices require a large top-gate which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here we demonstrate rf reflectometry is possible in an undoped SET.Comment: Four pages, three figures, one supplementary fil

    Global standards of Constitutional law : epistemology and methodology

    Get PDF
    Just as it led the philosophy of science to gravitate around scientific practice, the abandonment of all foundationalist aspirations has already begun making political philosophy into an attentive observer of the new ways in which constitutional law is practiced. Yet paradoxically, lawyers and legal scholars are not those who understand this the most clearly. Beyond analyzing the jurisprudence that has emerged from the expansion of constitutional justice, and taking into account the development of international and regional law, the ongoing globalization of constitutional law requires comparing the constitutional laws of individual nations. Following Waldron, the product of this new legal science can be considered as ius gentium. This legal science is not as well established as one might like to think. But it can be developed on the grounds of the practice that consists in ascertaining standards. As abstract types of best “practices” (and especially norms) of constitutional law from around the world, these are only a source of law in a substantive, not a formal, sense. They thus belong to what I should like to call a “second order legal positivity.” In this article I will undertake, both at a methodological and an epistemological level, the development of a model for ascertaining global standards of constitutional law

    Hybrid architecture for shallow accumulation mode AlGaAs/GaAs heterostructures with epitaxial gates

    Get PDF
    Accumulation mode devices with epitaxially grown gates have excellent electrical stability due to the absence of dopant impurities and surface states. We overcome typical fabrication issues associated with epitaxially gated structures (e.g., gate leakage and high contact resistance) by using separate gates to control the electron densities in the Ohmic and Hall bar regions. This hybrid gate architecture opens up a way to make ultrastable nanoscale devices where the separation between the surface gates and the 2D electron gas is small. In this work, we demonstrate that the hybrid devices made from the same wafer have reproducible electrical characteristics, with identical mobility and density traces over a large range of 2D densities. In addition, thermal cycling does not influence the measured electrical characteristics. As a demonstration of concept, we have fabricated a hybrid single-electron transistor on a shallow (50 nm) AlGaAs/GaAs heterostructure that shows clear Coulomb blockade oscillations in the low temperature conductance.This project was supported by the Australian Government under the Australia-India Strategic Research Fund and by the Australian Research Council (ARC) DP scheme. A.R.H. acknowledges an ARC Outstanding Researcher Award. Devices were fabricated using the facilities at the NSW Node of the Australian National Fabrication Facility (ANFF). J.R., A.L., and A.D.W. acknowledge support from Mercur Pr-2013-0001, BMBF-Q.com-H 16KIS0109, and DFH/UFA CDFA-05-06.Copyright (2015) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in MacLeod SJ, See AM, Hamilton AR, Farrer I, Ritchie DA, Ritzmann J, Ludwig A, Wieck AD, Applied Physics Letters 106, 012105 (2015) and may be found at http://dx.doi.org/10.1063/1.4905210
    • …
    corecore