12 research outputs found

    Artificial Neural Network Models to Predict the Cost and Time of Wastewater Projects

    Get PDF
    Infrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was (26.24%), and (5.5%), and AA was (74%), and (94.5%), for cost and time model, respectively. The researcher concluded that the ANN model has a strong correlation and high accuracy, indicating that these models are characterized by high efficiency and good performance in predicting cost and time

    The Prediction Process Based on Deep Recurrent Neural Networks: A Review

    No full text
    Prediction is vital in our daily lives, as it is used in various ways, such as learning, adapting, predicting, and classifying. The prediction of parameters capacity of RNNs is very high; it provides more accurate results than the conventional statistical methods for prediction. The impact of a hierarchy of recurrent neural networks on Predicting process is studied in this paper. A recurrent network takes the hidden state of the previous layer as input and generates as output the hidden state of the current layer. Some of deep Learning algorithms can be utilized in as prediction tools in video analysis, musical information retrieval and time series applications. Recurrent networks may process examples simultaneously, maintaining a state or memory that recreates an arbitrarily long background window. Long Short-Term Memory (LSTM) and Bidirectional RNN (BRNN) are examples of recurrent networks. This paper aims to give a comprehensive assessment of predictions based on RNN. Additionally, each paper presents all relevant facts, such as dataset, method, architecture, and the accuracy of the predictions they deliver

    Quantitative and functional expression of somatostatin receptor subtypes in human thymocytes

    No full text
    We recently demonstrated the expression of somatostatin (SS) and SS receptor (SSR) subtype 1 (sst1), sst2A, and sst3 in normal human thymic tissue and of sst1 and sst2A on isolated thymic epithelial cells (TEC). We also found an inhibitory effect of SS and octreotide on TEC proliferation. In the present study, we further investigated the presence and function of SSR in freshly purified human thymocytes at various stages of development. Thymocytes represent a heterogeneous population of lymphoid cells displaying different levels of maturation and characterized by specific cell surface markers. In this study, we first demonstrated specific high-affinity 125I-Tyr(11)-labeled SS-14 binding on thymocyte membrane homogenates. Subsequently, by RT-PCR, sst2A and sst3 mRNA expression was detected in the whole thymocyte population. After separation of thymocytes into subpopulations, we found by quantitative RT-PCR that sst2A and sst3 are differentially expressed in intermediate/mature and immature thymocytes. The expression of sst3 mRNA was higher in the intermediate/mature CD3+ fraction compared with the immature CD2+CD3- one, whereas sst2A mRNA was less abundant in the intermediate/mature CD3+ thymocytes. In 7-day-cultured thymocytes, SSR subtype mRNA expression was lost. SS-14 significantly inhibited [3H]thymidine incorporation in all thymocyte cultures, indicating the presence of functional receptors. Conversely, octreotide significantly inhibited [3H]thymidine incorporation only in the cultures of immature CD2+CD3- thymocytes. Subtype sst3 is expressed mainly on the intermediate/mature thymocyte fraction, and most of these cells generally die by apoptosis. Because SS-14, but not octreotide, induced a significant increase in the percentage of apoptotic thymocytes, it might be that sst3 is involved in this process. Moreover, sst3 has recently been demonstrated on peripheral human T lymphocytes, which derive directly from mature thymocytes, and SS analogs may induce apoptosis in these cells. Interestingly, CD14+ thymic cells, which are cells belonging to the monocyte-macrophage lineage, selectively expressed sst2A mRNA. Finally, SSR expression in human thymocytes seems to follow a developmental pathway. The heterogeneous expression of SSR within the human thymus on specific cell subsets and the endogenous production of SS as well as SS-like peptides emphasize their role in the bidirectional interactions between the main cell components of the thymus involved in intrathymic T cell maturation

    Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain

    No full text
    The chemokines use G protein-coupled receptors to regulate the migratory and proadhesive responses of leukocytes. Based on observations that G protein-coupled receptors undergo heterologous desensitization, we have examined the ability of chemokines to also influence the perception of pain by cross-desensitizing opioid G protein-coupled receptors function in vitro and in vivo. We find that the chemotactic activities of both μ- and δ-opioid receptors are desensitized following activation of the chemokine receptors CCR5, CCR2, CCR7, and CXCR4 but not of the CXCR1 or CXCR2 receptors. Furthermore, we also find that pretreatment with RANTES/CCL5, the ligand for CCR1, and CCR5 or SDF-1α/CXCL12, the ligand for CXCR4, followed by opioid administration into the periaqueductal gray matter of the brain results in an increased rat tail flick response to a painful stimulus. Because chemokine administration into the periaqueductal gray matter inhibits opioid-induced analgesia, we propose that the activation of proinflammatory chemokine receptors down-regulates the analgesic functions of opioid receptors, and this enhances the perception of pain at inflammatory sites

    Role of the mu-opioid receptor in opioid modulation of immune function

    No full text
    Endogenous opioids are synthesized in vivo in order to modulate pain mechanisms and inflammatory pathways. Endogenous and exogenous opioids mediate analgesia in response to painful stimuli by binding to opioid receptors on neuronal cells. However, wide distribution of opioid receptors on tissues and organ systems outside the CNS, such as the cells of the immune system, indicate that opioids are capable of exerting additional effects in the periphery, such as immunomodulation. The increased prevalence of infections in opioid abusers based epidemiological studies further highlights the immunosuppressive effects of opioids. In spite of their many debilitating side effects, prescription opioids remain a gold standard for treatment of chronic pain. Therefore, given the prevalence of opioid use and abuse, opioid mediated immune suppression presents a serious concern in our society today. It is imperative to understand the mechanisms by which exogenous opioids modulate immune processes. In this review we will discuss the role of opioid receptors and their ligands in mediating immune suppressive functions. We will summarize recent studies on direct and indirect opioid modulation of the cells of the immune system as well as the role of opioids in exacerbation of certain disease states
    corecore