85 research outputs found

    Economic Evaluation of Mental Health Effects of Flooding using Bayesian Networks

    Get PDF
    The appraisal of appropriate levels of investment for devising flooding mitigation and to support recovery interventions is a complex and challenging task. Evaluation must account for social, political, environmental and other conditions, such as flood state expectations and local priorities. The evaluation method should be able to quickly identify evolving investment needs as the incidence and magnitude of flood events continue to grow. Quantification is essential and must consider multiple direct and indirect effects on flood related outcomes. The method proposed is this study is a Bayesian network, which may be used ex-post for evaluation, but also ex-ante for future assessment, and near real-time for the reallocation of investment into interventions. The particular case we study is the effect of flood interventions upon mental health, which is a gap in current investment analyses. Natural events such as floods expose people to negative mental health disorders including anxiety, distress and post-traumatic stress disorder. Such outcomes can be mitigated or exacerbated not only by state funded interventions, but by individual and community skills and experience. Success is also dampened when vulnerable and previously exposed victims are affected. Current measures evaluate solely the effectiveness of interventions to reduce physical damage to people and assets. This paper contributes a design for a Bayesian network that exposes causal pathways and conditional probabilities between interventions and mental health outcomes as well as providing a tool that can readily indicate the level of investment needed in alternative interventions based on desired mental health outcomes

    Geochemical study of the early cretaceous Fahliyan oil reservoir in the northwest Persian Gulf

    Get PDF
    Three crude oil samples from the Fahliyan Formation in ‘KG’ and ‘F’ fields in the northwest Persian Gulf, namely KG-031, F9A-3H and F15-3H for the geochemical study. In this study, the physicochemical properties, gas chromatography (GC, GC Mass) and (Detailed Hydrocarbon Analysis) DHA analyses for the collected Fahliyan oils were carried out. The API, Trace Element (Ni, V) and S% parameters indicated that the Fahliyan oil was generated from a source rock which deposited in reducing environment condition with a carbonate-shale compound lithology. Moreover, low pour point, higher S% and low viscosity parameters of “KG” sample confirmed the existence of medium oil characteristics in this field. In addition, the geochemical outcomes of GC, GC–MS and DHA analyses indicated that the ‘KG’ oils are more aromatic compared with ‘F’ oil; while biomarkers revealed that Fahliyan reservoir oil is highly mature and was formed from a carbonate source rock containing types II, III kerogen. Thus, sterane/hopane biomarkers (C24/C23 and C22/C21 ratios) revealed that Fahliyan oil originated from carbonate source rocks deposited in an anoxic to dysoxic environment, which is consistent with the above analyses. It was identified that the source rock age is early Cretaceous to late Jurassic. It can be reported that the Fahliyan oils from both fields were generated in the same source rock and have almost the same physical properties, and will have the same production strategy
    corecore