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Abstract: Appraisal of appropriate levels of investment for devising flooding mitigation and to1

support recovery interventions is a complex and challenging task. Evaluation must account for2

social, political, environmental and other conditions, such as flood state expectations and local3

priorities. The evaluation method should be able to quickly identify evolving investment needs as4

the incidence and magnitude of flood events continue to grow. Quantification is essential and must5

consider multiple direct and indirect effects on flood related outcomes. The method proposed6

is this study is a Bayesian Network which may be used ex-post for evaluation, but also ex-ante7

for future assessment, and near real-time for reallocation of investment into interventions. The8

particular case we study is the effect of flood interventions upon mental health which is a gap in9

current investment analyses. Natural events such as floods expose people to negative mental health10

disorders including anxiety, distress, and post-traumatic stress disorder. Such outcomes can be11

mitigated or exacerbated not only by state funded interventions, but by individual and community12

skills and experience. Success is also dampened when vulnerable and previously exposed victims13

are affected. Current measures evaluate solely the effectiveness of interventions to reduce physical14

damage to people and assets. This paper contributes a design for a Bayesian network that exposes15

causal pathways and conditional probabilities between interventions and mental health outcomes16

as well as providing a tool which can readily indicate the level of investment needed in alternative17

interventions based on desired mental health outcomes.18

Keywords: Bayesian network; Cost-effectiveness Intervention; Evaluation; Flood risk manage-19

ment; Mental health impacts; QALY20

1. Introduction21

Natural hazards can have large societal impacts. It is estimated that they caused22

7700 human fatalities and $110 billion loss of infrastructural assets worldwide just23

in 2014 [1]. Out of the set of natural hazards, flooding is often regarded as the most24

frequently-occurring type of natural disaster with increasing risk to society (particularly,25

in the UK and Europe), and with the greatest impact on human [2]. Of the e150bn in26

reported damages caused by natural hazards in Europe in the period of 1999 to 2009,27

over one-third of damages (i.e. e50bn) were due to flooding. Furthermore, annual flood28

losses are expected to increase five-fold by 2050 and nearly 17-fold by 2080 in Europe,29

drawing attention to the urgency for cities in Europe to construct resilience against30

flooding [3].31

Similar to other natural disasters, when flooding occurs, it creates significant dam-32

age to homes, communities, businesses, public services, etc. Residential properties33
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Figure 1. There are direct and indirect impacts of flood damages that are not easily be quantified
in monetary terms [4]

usually suffer the greatest proportion of flood damage, with 25% of total damage e.g.,34

£320 million cost incurred by 10,465 properties due to flooding [5]. Therefore, flood risk35

management is a disaster administration priority for European countries, particularly36

the UK.37

It has been argued that flood risk management is usually measured as direct prop-38

erty and infrastructure losses, since these are the most important input for cost–benefit39

analysis that guide the government bodies to invest in flood risk management strate-40

gies [6]. However, the impacts of flooding on urban populations are multi-faceted and41

wide-ranging. It is well-known that floods also have enormous impacts on people, both42

directly and indirectly (see Figure 1). Distinctions must be made between direct/indirect43

and tangible/intangible flood damages. Direct damage becomes immediately visible in44

the affected areas due to close physical contact with floodwater, while indirect damage45

emerges with a time delay and/or outside the area affected by floods [4].46

The most apparent intangible impact of flooding is on human health. Direct intan-47

gible damage is a primary loss, which manifests as physical injury or even loss of life.48

Indirect health impacts are mental health disorders, which are caused by the experience49

of being flooded, or being impacted during the restoration process. Estimating flooding50

impacts will be provide valuable insights for decision making and risk mitigation, policy-51

making, civil protection, emergency alertness and response, insurance and reinsurance,52

damage estimation practice/research, etc. [7].53

On account of this, an comprehensive societal cost–benefit assessment must take54

into account intangible losses caused by floods, such as psychological disorders or55

anxiety [8], as well as tangible losses. Due to anticipated complications of converting56

intangible values, such losses are generally ignored in risk assessments [9]. Thus,57

economic evaluation of the convincing levels of investment which should be made58

into interventions to mitigate the flood risk, and support recovery from floods is very59

challenging.60

In this paper, the primary focus is on the evaluation of flood impacts on human61

health, particularly mental health [10]. Flood impact assessment is a key component62

of the practice of flood risk management. Flood risk is defined in the European Flood63

Directive as “the combination of the probability of a flood event and of the potential64

adverse impacts on human health, the environment, cultural heritage and economic65
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activity associated with a flood event” [11]. Flood damage estimates are therefore, useful66

at all the stages of what is known as the flood mitigation cycle.67

It is thus crucial to embrace social, political, environmental and other conditions,68

such as flood likelihood and local priorities, into the comprehensive evaluation. The eval-69

uation method must be also able to swiftly determine changed investment requirements70

as the incidence and magnitude of flood events continue to grow. This quantification is71

essential and must examine various direct and indirect flood impacts on flood related72

outcomes in a probabilistic manner.73

In this paper, we illustrate how the Bayesian network (BN) probabilistic method74

can be used efficiently for ex-post economic evaluation, as well as ex-ante for future75

assessment, and indeed near real-time for reallocation of investment into interventions.76

In general, BNs provide a robust and flexible analytic approach to the challenge77

of complex health datasets, which pose specific computational challenges because of78

missing data, large or small size of data, complexity (of relationships not only between79

variables but also in the datasets themselves), changing populations, and nonlinear80

relationships between exposures and outcomes [12]. Unlike the regression-based models81

or multivariate copula models [13]—the BNs historically most commonly used in clinical82

risk prediction analysis and risk stratification [14] in medicine. They provide compact83

and instinctive graphical representations that can be used to conduct causal reasoning84

and risk prediction analysis. Furthermore, the cause and effect statements can be readily85

exploited in BN networks to reduce the computational time and cost of. This can be86

considered as another important advantage of this modelling approach in comparison to87

the conventional approaches, such as joint probability distribution, which only encodes88

the values of the outcomes of interest, given the input variables. Therefore, Bayesian89

networks offer a compact tool for dealing with the uncertainty and complexity of a90

system. In this study, the benefits, efficiency and limitations of the BN-based evaluation91

method will be studied by examining the effect of flood interventions upon mental92

health which is a gap in current investment analyses.93

In order to construct the proposed probabilistic methods, we need to have a holistic94

overview of the relationship between flood events, their aftermath, and population95

well-being and risk factors causing psychological disorders. The psychological health96

impacts of flooding, and their relationship with flooding and other risk factor will be97

briefly discussed in the next section. Estimating the cost of flooding on human health,98

in particular on human mental health, is very challenging but essential in order that99

investment into interventions can be evaluated against reduced mental health impacts.100

It is essential to use metrics/methods to monetize mental health impacts.101

In order to reduce the damages caused by flood events on the community and102

people, environmental agencies are using various interventions each with different103

outcomes, efficiencies and costs. Any combination of interventions results in different104

value for money, with multiple conditional dependencies between interventions, choices105

of implementation and their contexts. This study provides an efficient construction106

for a probabilistic BN that displays causal pathways and their probabilities between107

interventions and mental health outcomes as well as providing a tool which can readily108

indicate the level of investment needed in alternative interventions based on anticipated109

mental health outcomes.110

2. Psychological Impacts of Flooding111

The psychological impacts of flooding can be very significant and long-lasting.112

Difficulties in evaluating mental health impacts of flooding arise because accurate113

diagnosis of any condition is not straightforward, and mental health impacts are often114

under-reported, and can be overlooked in comparison to the physical health impacts.115

There are some studies evaluating the impact of flooding on mental health. In116

one of the earlier studies, [15] conducted a study to evaluate the psychological impacts117

attributed to a severe flooding in Kentucky, US in 1984. The findings indicated that118
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the flood exposure had psychological impacts on the population and impacts included119

depression and anxiety. [16] conducted a similar study with a group of participants120

from a flood affected population in the town of Lewes in the UK, to evaluate both the121

physical and mental health effects of the flooding in the area in the year 2000. The122

study findings identified a high correlation between flood exposure and psychological123

distress. Such physical and psychological consequences denote people’s vulnerabilities124

as they interact with nature [17]. Tapsell et al. go on to assert that quantification of125

natural disaster impacts on population health is an intricate task due to the delay in126

receiving feedback from the population. Nevertheless, they conducted a similar piece127

of research on the impacts on flooding of 1998 in large parts of England and Wales.128

Their longitudinal study took place over a period of four and half years, evaluated129

both physical and psychological impacts. The top four psychological impacts in the130

few weeks or months after the flood were claimed to be ‘Anxiety’, ‘Increased Stress131

Levels’, ‘Sleeping Problems’, and ‘Mild Depression’. Nonetheless, the order by which132

these health effects were reported varied from one geographical area to another.133

The UK and England in particular are prone to flooding. In 2005, a severe flood hit134

Carlisle, UK, and many homes were affected. Carroll et al. [18] conducted qualitative135

research to evaluate the psychological impact of this specific flood and to evaluate the136

impacts of disasters and how they could inform policies. They concluded that the main137

psychological impacts are anxiety, stress and post-traumatic stress disorder (PTSD).138

Another study reported specifically that females were psychologically more vulnerable139

than males in the event of flooding [19].140

Research in other regions provide similar findings. Vietnam is also susceptible to141

natural disasters and specifically to flooding. Bich et al. [20] highlight that controlling142

communes significantly reduces psychological impacts when flooding occurs. There143

are different strategies to mitigate the impact of flooding from low impact development144

technologies [21], relocation [8], to forestation [22]. It was also reported that relocation145

during flood recovery, as an intervention, is correlated with 600% increase in mental146

health symptoms [8].147

Zhong et al. [23] provide a better understanding of what is currently known re-148

garding the long-term health impacts of flooding and the factors that may influence149

health outcomes (including psychological health) by conducting a systematic mapping.150

Their findings indicate that 68% of these studies focused on psychological impacts of151

flooding, whereas only 16% of these studies evaluated the physical effects following152

exposure to flooding. They have underlined that future research needs to quantify the153

long-term health impacts of flooding and identify their major determinants using some154

novel quantitative tools. These tools should be able to quantify the influence of multiple155

social interventions, such as flood management, on long-term health outcomes, and also156

identify the most influencing factors affecting the psychological and physical impacts.157

3. Cost Estimation of Flooding158

Estimating the cost of flooding on human health including mental health is ex-159

tremely challenging. The study by [24] reports the best indicative estimates for the160

loss of life and health for the 2015 to 2016 UK winter floods (i.e. £43m, within a range161

of (£32m, £54m)). The best estimate of loss of life and health impacts is calculated as162

“surrogate cost of fatalities” plus “surrogate cost of health impacts”, where surrogate163

cost of fatalities (£5m) is measured as the number of fatalities due to flooding times164

‘average value of prevention of fatality’. The “surrogate cost for health impacts” (£38m)165

is calculated as ‘cost per household’ times ‘number of households affected’. The first166

term (cost per household) is defined as household willingness to pay per year to avoid167

health impacts of extreme flood events, times, discount factor in the year, and the second168

term (number of properties affected) is measured as the ‘number of residential properties169

flooded’ times ‘number of households likely to have health affects’.170
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Most studies focused on direct impacts. The common types of health metrics used171

are: death; hospital admissions and out-patients visits; cases of acute morbidity or172

injuries; and mental disorders or reduction in well-being [25].173

However, loss of life or number of injured are commonly used to measure the health174

burden associated with any natural disaster, and therefore, the impact of flooding on175

individuals’ mental health is often overlooked. In order to monetize health impacts176

in the flooding context, the following should be considered: Healthcare resource use;177

Productivity loss; Dis-utility from suffering or life-shortening.178

The monetary value of the latter component is typically evaluated by wealth-health179

trade-offs that the affected people reveal in surrogate markets or can be implemented180

through multiple choice experiments. The monetary value of dis-utility associated with181

an adverse health outcome is thus attributed to the willingness to pay (WTP) to avert182

outcomes or, when considering mortality risk, the value of a statistical life that is derived183

from individuals’ aggregated WTP for a small change in survival probabilities [25]. In184

the studies that used loss of life numbers to quantify health impacts, only a few of them185

applied a monetary value to this outcome by multiplying it with a value of statistical186

life. This is not surprising, given that monetizing death is less useful for descriptive187

studies that are investigating trends in effects, or for studies reporting results from188

population-based surveys.189

Matsushima et al. [26] valued WTP to avoid mental damages from flooding using190

an option value approach, in order to address potential strategic bias that would lead to191

an over-valuation of WTP. The WTP was also reported in [27] to estimate the willingness192

to contribute in labour, in order to circumvent the fact that most individuals would not be193

able to afford any financial payment. They have also concluded that flood damage was194

estimated on average to represent about 20% of households’ annual income. However,195

it was not possible to solve the welfare loss from morbidity and well-being reduction196

from the welfare loss due to damages to assets. Poor households were found to be more197

vulnerable to flooding as the associated damages made up are a significantly larger198

portion of their annual income. Households heavily dependent on agricultural activities199

were also found to be more vulnerable.200

The UK Environment Agency (EA) has recently studied the new economic costs201

for the mental health impacts of flooding by analysing the data provided by Public202

Health England (PHE). It was illustrated that the mental health prevalence of people203

disrupted or affected by flooding is considerably higher than the unaffected groups,204

over 12 and 24 months periods. The findings of the study are comparable to the results205

from the flooding occurred in 2007. It was also reported that the chance of any type of206

mental health outcomes will increase by the flood severity (or depth of flood) among the207

affected population. The same study confirms that WTP could be a very useful metric to208

evaluate the social cost of the flood impact, however, it cannot be used to include the209

actual cost of the mental health outcomes to the economy.210

A study commissioned by Defra suggested that households were, on average,211

willing to pay £200 per year (2004 prices) to avoid the negative health impacts of flooding212

(e.g. for events occurring less frequently than 1 in 75 years) [28]. Defra’s climate change213

risk assessmen report [29] considers the costs of treating a case of mild depression214

following a flood event as £970 (2010 prices), which can be used as an indicator of mental215

health impacts. It should be noted that these monetary values are normally used as216

predictions in policy assessments to allocate resources to protect against an abstract217

individuals’ loss of life or suffering from harm. They were not designed to include218

post-event analysis. Without any official post-event values, however, these values were219

used as a surrogate in both the 2007 and 2013 to 2014 ’cost of flood reports’ to provide an220

indicative sum for loss of life and health impacts. Nevertheless, the above research and221

other studies conducted by PHE intended to better understand the health impacts of222

flooding and these efforts have resulted in some changes in the 2013 to 2014 methodology223

for estimating cost of flood. More research is urgently required to estimate the cost of224
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treating cases of anxiety, depression and PTSD, using the existing and other relevant225

data. The factors affecting the cost of mental health outcomes are:226

• Knowledge of each outcome (or condition),227

• Prevalence of these outcomes,228

• Presence of known treatment plans,229

• Duration of any treatment,230

• Likely impact of the outcome over the short term in terms of days of work lost.231

The quantification of the benefits of flood risk prevention measures is still an232

unresolved challenge in disaster management research works. In particular, there is233

no clear flood risk management to quantify the effect of interventions in reducing the234

flooding impacts on people including the effects on the affected population’s mental235

health. The most widely adopted framework in flood risk reduction is represented as the236

calculation of the expected damages as a function of flood hazard, physical vulnerability237

and exposure [30]. According to this framework, flood hazard is characterized by specific238

return periods – an estimate of the likelihood of the flood. Moreover, together with239

the vulnerability, it is usually expressed as an index, while the exposure is expressed240

with the unit(s) of measurement of the elements at risk, in physical or monetary terms.241

However, floods can impact socio-ecological systems in various forms, and therefore this242

framework is limited to assess damages to constructed infrastructure only. Furthermore,243

there have been a few other attempts to provide such a holistic risk assessment (see [31,244

32]), yet, these methods primarily focus on assessing direct tangible costs, since there is245

only enough relevant information to justify decisions regarding structural risk reduction246

measures. The main challenge with traditional frameworks is that they neglect the247

fact that the magnitude of flooding costs is determined by the adaptive behaviour of248

communities to absorb the flood hazards. It is obvious that the human dimension of249

vulnerability must be addressed as one of the main elements of the flood risk. The250

human aspect of vulnerability relates to the ability to cope with the hazard after a flood251

and the capacity to adapt to the flood hazard before the event [33]. More recently,252

emphasis has shifted from just being prepared, informed, and minimising the dimension253

of vulnerability, to strategic proactive planning and management. There are two main254

reasons for this shift in recent flood risk management:255

1. The uncertainty of flood occurrence has noticeably increased due to intensified256

climate change; and257

2. The consequences of flooding considerably depend on the behaviour of the affected258

people and their capability to adapt.259

4. Mitigating the Impact of Flood Health Damages260

There are various interventions that reduce the damages caused by flood events261

on communities, local environmental agencies, with different outcomes, efficiencies262

and costs. For instance, an intervention can be to use an early warning system (EWS)263

to reduce the amount of direct tangible costs (e.g., people can move transportable264

properties outside of the exposed area when the flood hazard is anticipated). The aim of265

a flood warning system is to provide useful information, for instance, by issuing alerts266

or activating the required protection measures with a view to improve decision making267

and action. The connections and feedback between hydrological and social spheres of268

early warning systems are key elements of a successful flood mitigation.269

The behaviour of the public and first responders during flood situations, are deter-270

mined by their preparedness, and are heavily influenced by numerous behavioural traits271

such as perceived benefits of protection measures, risk awareness, or even denial of the272

effects that might occur. In the UK, the Environment Agency (EA) has an important273

role in warning citizens about the risk of flooding with a view to reduce the impact of274

flooding from rivers and the sea as well as pluvial floods.275

In November 2009, Cumbria experienced devastating flooding in its different re-276

gions due to the heaviest rainfall ever recorded in the UK [34]. Following this, the277
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EA carried out qualitative and quantitative research to evaluate the impact of the EA’s278

flood intervention methods, including early warning systems, partnership work, and279

on-ground assistance. These research works also highlight opportunities to improve the280

EA’s ability to respond to future floods. The affected residents received warnings in the281

various forms: including EA Flood-line Warnings Direct, people own observation of the282

local area, warnings on weather forecasts, warnings from neighbours, friends, and/or283

family, the Flood-line, and warnings by the emergency services [35]. They found that284

early warning systems themselves could add to stress. Also, most people found Flood285

Action Groups very helpful in protecting their homes against flooding. However, they286

valued the idea of making a flood action plan, though such flood action planning was287

not yet widespread.288

Another intervention to reduce mental health harm is to relocate people away from289

the affected regions as soon as possible, and to support them during and after a flood.290

This also has rebound effects.291

A probabilistic method is needed to consider all sources of uncertainty that may292

influence an intervention in a particular context in order to evaluate its value for money293

There are complex relationships between flood events, their aftermath, population294

well-being and risk factors causing people’s health deterioration and/or psychological295

disorders [36].296

To understand potential benefits or drawbacks of any intervention for reducing297

the damaging impacts on people’s health, and particularly their mental health, needs298

to take into consideration the nature of the hazard, the vulnerability of the community299

and its exposure. Figure 2 illustrates a conceptual model of a customised version of300

the risk framework considering the impacts that EWS may have on people [33]. In this301

framework, Hazard refers to the potential occurrence of flood which may cause loss of302

life, injury, or other health impacts, as well as damage and loss of property, infrastructure,303

livelihoods, service provision, and environmental resources.

Figure 2. Customised application of the risk framework by including early warning system (some
information derived from the original framework developed by [33])

304

5. Flooding and Health Risk Factors: Modelling approaches305

There are currently several statistical methods to explore the relationship between306

flooding and the health risk factors discussed above. For instance, a multivariable307

logistic regression model was proposed by [37] to model individuals’ revealed changes308

in mental health outcomes between year one and year two after flooding, by considering309
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some of the above-mentioned factors. A similar method (logistic regression analysis)310

was used to select the risk factors and to predict the flooding victims’ mental health311

states [38]. Applications of the multivariate regression-based methods are very limited.312

Their performance is hugely dependent on the size of the dataset, and can hardly be313

used to efficiently model the complex relationships between flood events, their aftermath314

impacts, and risk factors causing people’s health deterioration and/or psychological315

disorders. In addition, they are not useful in assessing risks in complex systems and316

scenarios of ‘decision making under uncertainty’ to optimise cost-effective decisions.317

Alternatively, probabilistic methods, particularly BNs have become an increasingly318

popular method for modelling uncertain and complex systems [39] and are considered319

as a powerful tool for presenting knowledge and interpreting insights from available320

data [40]. Applications of BN methods are found in a growing number of studies, and321

disciplines [41]. BNs are particularly useful for evaluation due to their capability of322

classification based on observations. BNs have been also widely used in environmental323

management contexts and are appropriate for decision making under uncertainty [42,43].324

Moreover, unsupervised learning from a dataset can be performed using a BN by325

adopting the learning algorithm to find both structure and conditional probabilities. This326

means the evaluator does not need to know how to create a BN, although it is possible327

to aid the learning algorithm with a prior knowledge about relations and probabilities.328

Dealing with uncertainty when evaluating policy is a challenge that can be addressed329

using BNs, since uncertain probabilities of variables may be safely ignored to get to the330

desired probabilistic quantity of a random variable. Furthermore, BNs engage directly331

with subjective data in a transparent way. Hence, the method could be considered as a332

tool to explore beliefs, evidence and their logical implications, than as a means to ’prove’333

something in somewhat absolute sense. They, therefore, are useful in producing the334

balanced judgements required for evaluation in a Value for Money context. Additionally,335

BNs can be used privately to structure and inform the evaluator’s understanding, or336

publicly in a participatory process to stimulate and challenge collective views [41].337

Finally, BNs are user-friendly, and practical, and can present intuitively and graphically338

the ‘story’ behind a finding.339

6. Evaluation method: Probabilistic Graphical Models340

Bayesian network (BN) is a mathematical model that graphically and numerically341

represents the probabilistic relationships between random variables through the Bayes342

theorem. This technique is becoming popular to aid in decision-making in several343

domains due to the evolution of the computational capacity that makes possible the344

calculation of complex BN [44]. Applications of BN methods are found in a growing345

number of disciplines and policies [14,41,45,46].346

In the BN, as a probabilistic graphical model which is used to represent knowledge
about an uncertain domain [44], each random variable is represented by a node in the
BN. The BN, B, is a directed acyclic graph (DAG) that represents a joint probability
distribution over a set of random variables X = (X1, X2, . . . , Xn). The network is defined
by the pair B = {G, θ} , where G = (X, E) is a DAG with nodes X representing random
variables and edges E representing the direct dependencies between these variables. θ is
the set of probability functions (i.e., node probability table) which contains the parameter
θxi |pai

= PB(xi|pai) for each xi in Xi conditioned by the parent set of xi, denoted by pai,
as the set of parameters of Xi in G. The joint probability distribution defined by B over
X is given in Eq. (1):

PB(X1, . . . , Xn|θ) =
n

∏
i=1

PB(Xi|pai) =
n

∏
i=1

θXi |pai
(1)

A simple example of a BN is illustrated in Figure 3, where the probability of a person347

having cancer can be computed in terms of “Relatives had cancer” (Y1) and the person is348

smoking or not (denoted by Y2).349
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Figure 3. A simple BN model indicating the inter-dependencies between lung cancer classifier
and the affecting risk factors (adopted from [47]).

As it can be observed, a conditional probability table (CPT) is attached to each350

node. The CPT on each node is associated with the conditional probability distribution,351

as given in Eq. (1). The CPTs (or conditional probabilities) can be estimated from the352

observed data or expert opinions [14,48]. A link (or ‘edge’) between two nodes represents353

a probabilistic dependency between the linked nodes. The links are shown with an arrow354

pointing from the causal node(s) (Y1, Y2 in Figure 3) to the effect node (X: Lunge cancer355

in Figure 3). There must not be any directed cycles: one cannot return to a node simply356

by following a series of directed links. Nodes without a child node are called leaf nodes,357

nodes without a parent node are called root nodes (Y1, Y2), and nodes with parent and358

child nodes are called intermediate nodes. In other words, a BN represents dependence359

and conditional independence relationships among the nodes using joint probability360

distributions, with an ability to incorporate human oriented qualitative inputs. The361

method is well established for representing cause-effect relationships.362

BN learning consists of two general steps: (i) Finding DAG, which illustrates the363

inter dependency between the variables/nodes and (ii) Finding CPT for each node given364

the values of its parents on the learned DAG. Finding the best DAG is the crucial step365

in BN design. Construction of a graph to describe a BN is commonly achieved based366

on probabilistic methods, which utilise databases of records [48], such as the search367

and score approach. In this approach, a search through the space of possible DAGs is368

performed to find the best DAG. The number of DAGs, f (p), as a function of the number369

of nodes, p, grows exponentially with p [49].370

In this paper, BN will be used to evaluate the effect of flood interventions upon371

mental health to explore and display causal and complex relationships between key372

factors and final outcomes in a straight-forward and understandable manner. The373

proposed BN is also used to calculate the effectiveness of the interventions, and the374

uncertainties associated with these causal relationships, which will be discussed in the375

next section. Due to the lack of data, the proposed BN in this study was learned based376

on expert judgments (including experts from EA and Public Health of England (PHE)),377

and narrative in the relevant literature (as discussed in the next section). However, this378

approach will effectively work with data from a variety of sources, and handles a mix379

of subjective and objective data that can be incorporated with variables from different380

contexts [14,48]. Moreover, BN is a reasonable supplement to traditional statistical381

methods, since traditional statistical methods were unable to update complex system in382

the light of new information, while BNs can update the system when new evidence is383

added during analysis. The proposed BN developed an understanding of the effect of384

flood interventions, and the risk factors associated with higher impact on mental health385

outcomes.386

To construct a BN for evaluation of the effect of flood interventions upon mental387

health, the following steps need to be performed:388

1. BN structure learning: There are a number of risk factors related to the flood inter-389

ventions upon mental health including healthcare resources, flood management390

practices, existing mental disorders and many more which will be considered as391

input and mediate nodes to the proposed BN model. The level of effectiveness392

between these nodes and causal relationships between them are presented by edges,393



Version July 5, 2021 submitted to Int. J. Environ. Res. Public Health 10 of 16

which can be elicited from the domain experts, and available data to construct the394

BN structure.395

2. Parameter learning: prior probabilities assigned to root nodes and conditional396

probabilities for dependent (leaf) nodes are elicited from the experts domain and397

existing information. In the BN, the state of some nodes could be influenced by their398

prior states, or affect other nodes. The probabilities of these nodes are determined399

before propagating evidence to the model [50,51].400

3. Outcomes of BN (Posterior probability learning): The final step in BN is to run the401

model at agreed intervals. As new information is added to the model, the current402

priors/states will be updated using the Bayesian paradigm in a very efficient way.403

It is also straightforward to use the BN to identify which variables have the largest404

influence on the final outcomes of the network. A unique feature of BNs is the ability to405

back propagate the model’s conditional probabilities through the model structure. This406

means that we can test how to achieve desired outcomes by identifying the most likely407

combination of risk factors.408

The BN model can be used to develop an effective and efficient decision support tool.409

In the next section, the BN-based decision support tool will be developed to evaluate the410

cost-effectiveness (in the monetary value) of various flood interventions upon mental411

health in the present of different uncertainties and under certain constraints.412

7. Results413

7.1. Using Bayesian network to evaluate the effect of flood interventions upon mental health414

In this section, we evaluate the impact of the flood interventions on the mental415

health of the affected people by flooding using a BN trained by combination of the data416

extracted from a narrative in the relevant literature from the published reports and expert417

judgments (including experts from EA and PHE). However, it is very straightforward to418

train a BN based on combination of the heterogeneous data collected from the surveys419

and other methods [14].420

We first need to learn the BN for a subset of the risk factors selected in relation to421

the flood intervention upon mental health, including prevalence of probable depression422

in people who have been flooded (Flood), loss of sentimental items (LSOI), prevalence423

of loss of sentimental item as secondary stressor in those exposed to flooding (PPD), less424

severe depression (Lsever), and more severe depression (Msever).425

It is usually recommended that the BN structure and model parameters should426

be learned from the combination of data and expert judgments [48]. However, Vepa427

et al [14] argue that the best BN structure learned from data only, and by employing428

various score-based or constraints-based methods [49], would not result in the model429

favoured by the domain experts. As a result, the BN structure illustrated in Figure 4 is430

learned based on the expert opinions only (as suggested in [14,48]). The learned BN for431

the selected risk factors was validated by the domain expert (Economic Evidence expert432

from the English Environment Agency). It should be noted that “CU” and “CQALY” in433

the learned BN shown in Figure 4 stand for “change in utility” and “change in QALY”,434

respectively, which will be discussed later in this section.435

In the next step, we need to estimate or determine the CPTs. Due to the lack436

of data, the conditional probabilities of each node of the BN shown in Figure 4, are437

determined using the expert opinions [52] and the information extracted from the438

narrative of literature. Table 1 shows the summary of the probabilities of each node,439

illustrated in Figure 4 and the source of information used to determine these probabilities.440

For instance, the probability of LOSI is reported to be 62% based on elicited opinions441

from the EA and PHE experts, while the prevalence of probable depression in people442

who have been flooded (denoted by “Flood”) is determined to be 20.1% [53] and the443

English National Study of Flooding and Health (NSFH, 2020), which is available at444

https://bit.ly/3eXiKwt. The probability of PPD was determined to be 18.6% [53]. The445

https://bit.ly/3eXiKwt
https://bit.ly/3eXiKwt
https://bit.ly/3eXiKwt
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Flood LOSI

PPD

Lsever Msever

CU

CQALY

Figure 4. Static Bayesian network to evaluate the effect of flood interventions upon mental health
where LOSI indicates the loss of sentimental items, PPD indicates the prevalence of probable
depression, Msever and Lsever indicate the more severe depression and less severe depression
respectively, CU indicates the change in utility and CQALY indicates the change in QALY.

probabilities of Lsever and Msever are respectively determined to be 48.3% and 21.1%446

(NSFH, 2020).447

Table 1: The elicited probabilities and corresponding source of data, for each node of BN
illustrated in Figure 4.

Input parameter (node) probability Source of data
Flood 20.1% [53] (pp. 8)
LOSI 62% domain experts’ opinions
PPD 18.6% [53] (pp. 15)
Lsever 48.3% (NSFH, 2020)
Msever 21.1% (NSFH, 2020)

Following [54], three mental in this study: Remission, less severe depression448

(Lsever), and increased or more severe depression (Msever). The utility value of being in449

remission from depression was suggested to be 0.85, while having less severe depression450

is 0.60 and more severe depression is 0.42. For the sake of simplicity at this stage, we451

assume these utility states are monitored over one year, and that remission from de-452

pression is equivalent to not having depression. Moreover, there could be some overlap453

between the two states of Lsever and Msever, which then need to compute the change in454

utility as illustrated in Table 2. It should be noted the mean values reported in Table 2 are455

computed as the meas of suggested Beta distribution (denoted by Be(α, β) in the fourth456

column). These Beta distributions can be used to determine the cost-effectiveness inter-457

vention by optimising the Expected Value of Perfect Information measures [55,56], which458

is beyond the scope of this article and will be considered as the further development of459

this study.460
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Table 2: The states of mental health and their corresponding utility values, as suggested
in [54].

Input parameter Mean Change Probability Source
(health states) value in utility distribution of data
Remission 0.85 Be(923, 163) [54]
Lsever 0.60 (0.85− 0.6) = 0.25 Be(182, 122) [54]
Msever 0.42 (0.85− 0.42) = 0.43 Be(54, 75) [54]

Next, the proposed BN presented in Figure 4 computes the change in QALY461

(CQALY) caused by loss of sentimental items (Table 3). A QALY is a measure that462

combines health-related quality of life and length of life into a single measure of health463

gain. The National Institute for Health and Clinical Excellence (NICE) provides the cost-464

effectiveness threshold range, which is between £20000 and £30000 per QALY [57,58].465

Table 3: The change in QALY outcomes due to an intervention taken by the EA.

Health Before After The CQALY
state intervention intervention difference outcomes
Msever 0.055 0.033 0.022 0.022× £20000 = £440
Lsever 0.062 0.038 0.024 0.024× £20000 = £480

Let assume before taking an intervention (e.g., using flood early warning system466

by the local EA to inform the people in advance about flood hazard) that could lead to467

an individual losing their sentimental item, the changes in QALY for two mental health468

states (i.e., Msever and Lsever) are computed from the learned BN illustrated in Figure 4469

as follows:470

• For Msever: CQALY=0.055471

• For Lsever: CQALY=0.062472

The above CQALYs are computed based on the mean values suggested for the mental473

states as given in Table 2.474

The QALY values, if the intervention was decided to be taken by the local EA prior475

to the flooding, will be computed (from the BN) as follows:476

• For Msever: CQALY=0.033.477

• For Lsever: CQALY=0.038.478

The differences that the intervention will make for the mentioned mental health states479

are given by480

• For Msever: 0.055–0.033 = 0.022;481

• For Lsever: 0.062–0.038 = 0.024.482

Finally by multiplying these changes in QALY by the lowest point of NICE’s QALY483

cost-effectiveness threshold (e.g. £20,000), we can evaluate the cost-effectiveness of the484

suggested intervention on reducing the impact of the mental health due to losing of485

sentimental items, as:486

• For Msever: 0.022× £20, 000 = £440.487

• For Lsever: 0.024× £20, 000 = £480.488

This suggests that using flood early warning system by the local EA to inform the489

people could save at least £480 to ensure that an individual will not suffer the less severe490

depression due to losing their sentimental items in the flooding events.491

It should be noted that the early warning system could itself create further stress.492

An alternative way would be to relocate people away from the affected regions as soon as493

possible, and to support them during and after a flood. Although, any of these strategies494
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or their combinations could affect the flooded people’s mental health, with each strategy495

imposing varying benefits and costs. The method proposed above can provide us with496

an effective cost-benefit analysis approach in comparing the suggested interventions,497

by taking into account the complex relationships between flood events, their aftermath,498

population wellbeing and risk factors causing people’s health deterioration and/or499

psychological disorders, and costs and benefits of the interventions.500

8. Conclusions501

BNs have been written to evaluate (ex-post) the effect of different factors on out-502

comes, in contexts other than flooding. For instance, a BN has represented the in-503

teractions of indoor climate factors on the mental performance of office workers, to504

demonstrate that investment in improved thermal conditions is economically justified in505

most cases with different building designs [44]. This paper is interesting because it is506

not an evaluation of a single case, but attempts to gain insights across a diversity of past507

cases. Clearly, if a BN accurately reflects the conditional probabilities of past cases, it can508

be used for assessment (ex-ante) quantification of forthcoming designs of buildings, but509

there are considerations to be addressed.510

A BN used for evaluation, based on retrospective data and expert opinion, would511

need to change to represent the future scenario being assessment. The scenario may512

introduce new variables (and associated changes to prior probabilities) for example to513

represent how the future complexity of the system will work. The scenario may require514

changes to the values of existing variables, for example, to reflect future efficiencies515

or effects of different ways of organizing. In fact, a number of BNs may be developed516

to examine alternative viable futures. Every BN will have a set of unique conditional517

probabilities which will assess the future conditions or scenarios. Across all BNs a range518

of potential outcomes will ensue and will provide an indication of future outcomes.519

However, scenarios are speculative and indeed deterministic [59], but if they extend cur-520

rent representations of factors upon outcomes, they may be argued as rational extensions521

of current understanding. In general, a BN-based modelling approach would enable us522

to compute the costs and benefits, based on multiple causal factors including individual523

risk factors or interventions on the system, by taking into consideration uncertainty524

in the input parameters. The derived estimated outcomes could be presented in the525

form of probabilities if appropriate probability distribution could be considered on the526

input parameters (see Section 7.1). It should be noted that the BN similar to many other527

Machine learning methods is a data-driven approach. As a result, the derived results528

using BN are not generalisable and are fully dependent on the collected data and this529

assumption that the data sources are accurate. We identify this as a limitation of the530

proposed approach.531

The health economic evaluation methodology proposed in this study, to explore532

the level of investment required in alternative interventions based on desired mental533

health outcome, could be developed further by computing the value of information (VoI)534

analysis [55] (e.g., expected value of perfect information or EVPI). It should be desired535

to compare the cost-effectiveness of the suggested interventions for the flood morbidity536

related mental health depression from both the healthcare perspective and a societal537

perspective, using the proposed evaluation method proposed in this study and a VoI538

analysis, which estimates the expected value of eliminating the uncertainty surrounding539

cost-effectiveness estimates, for both perspectives. Furthermore, the concept of expected540

value of perfect information, which is a particular measure of VoI analysis, can be used541

to examine probabilistic sensitivity analysis for the discussed cost-effectiveness problem542

(see [55,56]).543

It would be also interesting to explore further the price or threshold that a healthcare544

decision maker or policymaker would be willing to pay to have perfect information545

regarding all factors that influence which intervention choice is preferred as the result546

of a cost-effectiveness analysis. However, this could be answered by VoI analysis as547
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the value (in money terms) after removing all uncertainty from such an analysis, but it548

requires more research and data to investigate the effectiveness of the proposed method549

in this regard.550
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