472 research outputs found
A new hybrid method for size and topology optimization of truss structures using modified ALGA and QPGA
Modified Augmented Lagrangian Genetic Algorithm (ALGA) and Quadratic Penalty Function Genetic Algorithm (QPGA) optimization methods are proposed to obtain truss structures with minimum structural weight using both continuous and discrete design variables. To achieve robust solutions, Compressed Sparse Row (CSR) with reordering of Cholesky factorization and Moore Penrose Pseudoinverse are used in case of non-singular and singular stiffness matrix, respectively. The efficiency of the proposed nonlinear optimization methods is demonstrated on several practical examples. The results obtained from the Pratt truss bridge show that the optimum design solution using discrete parameters is 21% lighter than the traditional design with uniform cross sections. Similarly, the results obtained from the 57-bar planar tower truss indicate that the proposed design method using continuous and discrete design parameters can be up to 29% and 9% lighter than traditional design solutions, respectively. Through sensitivity analysis, it is shown that the proposed methodology is robust and leads to significant improvements in convergence rates, which should prove useful in large-scale applications
Surface water temperature, salinity, and density changes in the northeast Atlantic during the last 45,000 years: Heinrich events, deep water formation, and climatic rebounds
We developed a new method to calculate sea surface salinities (SSS) and densities (SSD) from planktonic foraminiferal delta(18)O and sea surface temperatures (SST) as determined from planktonic foraminiferal species abundances. SST, SSS, and SSD records were calculated for the last 45,000 years for Biogeochemical Oceanic Flux Study (BOFS) cores 5K and 8K recovered from the northeast Atlantic. The strongest feature is the dramatic drop in all three parameters during the Heinrich ''ice-rafting'' events. We modelled the possibility of deepwater formation in the northeast Atlantic from the SSD records, by assuming that the surface waters at our sites cooled as they flowed further north. Comparison with modelled North Atlantic deepwater densities indicates that there could have been periods of deepwater formation between 45,000 and 30,000 C-14 years B.P. (interrupted by iceberg meltwater input of Heinrich event 3 and 4, at 27,000 and 38,000 C-14 years B.P.) and during the Holocene. No amount of cooling in the northeast Atlantic between 30,000 and 13,000 years could cause deep water to form, because of the low salinities resulting from the high meltwater inputs from icebergs. Our records indicate that after each Heinrich event there were periods of climatic rebound, with milder conditions persisting for up to 2000 years, as indicated by the presence of warmer and more saline water masses. After these warm periods conditions returned to average glacial levels. These short term cold and warm episodes in the northeast Atlantic ate superimposed on the general trend towards colder conditions of the Last Glacial Maximum (LGM). Heinrich event 1 appears to be unique as it occurs as insolation rose and was coeval with the initial melting of the Fennoscandian ice sheet. We propose that meltwater input of Heinrich event 1 significantly reduced North Atlantic Deep Water formation reducing the heat exchange between the low and high latitudes, thus delaying deglaciation by about 1500 radiocarbon years (2000 calendar years)
Research on High Speed Aerodynamics at the Royal Aircraft Establishment from 1942 to 1945
Summary.-A brief description of the Royal Aircraft Establishment (R.A.E.) High Speed Wind Tunnel is given, together with an account of the methods used for calibrating the tunnel and for testing models in it. This is followed by a survey of the more important results obtained from tests on models in the tunnel. An account is then given of the technique which has been used at the R.A.E. for the investigation of compressibility effects in flight. Flight experiments at high speeds are described, and some comparisons are made with the results of wind tunnel tests. Future developments in wind tunnel and flight research at high speeds are briefly discussed
Potential links between surging ice sheets, circulation changes and the Dansgaard Oeschger cycles in the Irminger Sea, 60-18 kyr.
Surface and deepwater paleoclimate records in Irminger Sea core SO82-5 (59°N, 31°W) and Icelandic Sea core PS2644 (68°N, 22°W) exhibit large fluctuations in thermohaline circulation (THC) from 60 to 18 calendar kyr B.P., with a dominant periodicity of 1460 years from 46 to 22 calendar kyr B.P., matching the Dansgaard-Oeschger (D-O) cycles in the Greenland Ice Sheet Project 2 (GISP2) temperature record [Grootes and Stuiver, 1997]. During interstadials, summer sea surface temperatures (SST<inf>su</inf>) in the Irminger Sea averaged to 8°C, and sea surface salinities (SSS) averaged to ∼36.5, recording a strong Irminger Current and Atlantic THC. During stadials, SST<inf>su</inf> dropped to 2°-4°C, in phase with SSS drops by ∼1-2. They reveal major meltwater injections along with the East Greenland Current, which turned off the North Atlantic deepwater convection and hence the heat advection to the north, in harmony with various ocean circulation and ice models. On the basis of the IRD composition, icebergs came from Iceland, east Greenland, and perhaps Svalbard and other northern ice sheets. However, the southward drifting icebergs were initially jammed in the Denmark Strait, reaching the Irminger Sea only with a lag of 155-195 years. We also conclude that the abrupt stadial terminations, the D-O warming events, were tied to iceberg melt via abundant seasonal sea ice and brine water formation in the meltwater-covered northwestern North Atlantic. In the 1/1460-year frequency band, benthic δ18O brine water spikes led the temperature maxima above Greenland and in the Irminger Sea by as little as 95 years. Thus abundant brine formation, which was induced by seasonal freezing of large parts of the northwestern Atlantic, may have finally entrained a current of warm surface water from the subtropics and thereby triggered the sudden reactivation of the THC. In summary, the internal dynamics of the east Greenland ice sheet may have formed the ultimate pacemaker of D-O cycles
Surface water temperature, salinity, and density changes in the northeast Atlantic during the last 45,000 years: Heinrich events, deep water formation, and climatic rebounds
- …
