46 research outputs found

    An optimal bandwidth allocation strategy for the delivery of compressed prerecorded video

    Full text link
    The transportation of prerecorded, compressed video data without loss of picture quality requires the network and video servers to support large fluctuations in bandwidth requirements. Fully utilizing a client-side buffer for smoothing bandwidth requirements can limit the fluctuations in bandwidth required from the underlying network and the video-on-demand servers. This paper shows that, for a fixed-size buffer constraint, the critical bandwidth allocation technique results in plans for continuous playback of stored video that have (1) the minimum number of bandwidth increases, (2) the smallest peak bandwidth requirements, and (3) the largest minimum bandwidth requirements. In addition, this paper introduces an optimal bandwidth allocation algorithm which, in addition to the three critical bandwidth allocation properties, minimizes the total number of bandwidth changes necessary for continuous playback. A comparison between the optimal bandwidth allocation algorithm and other critical bandwidth-based algorithms using 17 full-length movie videos and 3 seminar videos is also presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42314/1/530-5-5-297_70050297.pd

    Effectiveness of the global protected area network in representing species diversity

    Get PDF
    The Fifth World Parks Congress in Durban, South Africa, announced in September 2003 that the global network of protected areas now covers 11.5% of the planet's land surface. This surpasses the 10% target proposed a decade earlier, at the Caracas Congress, for 9 out of 14 major terrestrial biomes. Such uniform targets based on percentage of area have become deeply embedded into national and international conservation planning. Although politically expedient, the scientific basis and conservation value of these targets have been questioned. In practice, however, little is known of how to set appropriate targets, or of the extent to which the current global protected area network fulfils its goal of protecting biodiversity. Here, we combine five global data sets on the distribution of species and protected areas to provide the first global gap analysis assessing the effectiveness of protected areas in representing species diversity. We show that the global network is far from complete, and demonstrate the inadequacy of uniform—that is, 'one size fits all'—conservation targets

    The Positive Impact of Conservation Action

    Get PDF
    Governments recently adopted new global targets to halt and reverse the loss of biodiversity. It is therefore crucial to understand the outcomes of conservation actions. We conducted a global meta-analysis of 186 studies (including 665 trials) that measured biodiversity over time and compared outcomes under conservation action with a suitable counterfactual of no action. We find that in two-thirds of cases, conservation either improved the state of biodiversity or at least slowed declines. Specifically, we find that interventions targeted at species and ecosystems, such as invasive species control, habitat loss reduction and restoration, protected areas, and sustainable management, are highly effective and have large effect sizes. This provides the strongest evidence to date that conservation actions are successful but require transformational scaling up to meet global targets

    The status of the world's land and marine mammals: diversity, threat, and knowledge

    Get PDF
    Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action

    An Introductory 4.4BSD Interprocess Communication Tutorial

    No full text
    Berkeley UNIX † 4.4BSD offers several choices for interprocess communication. To aid the programmer in developing programs which are comprised of cooperating processes, the different choices are discussed and a series of example programs are presented. These programs demonstrate in a simple way the use of pipes, socketpairs, sockets and the use of datagram and stream communication. The intent of this document is to present a few simple example programs, not to describe the networking system in full. 1. Goals Facilities for interprocess communication (IPC) and networking were a major addition to UNIX in the Berkeley UNIX 4.2BSD release. These facilities required major additions and some changes to the system interface. The basic idea of this interface is to make IPC similar to file I/O. In UNIX a process has a set of I/O descriptors, from which one reads and to which one writes. Descriptors may refer to normal files, to devices (including terminals), or to communication channels. The use of a descriptor has three phases: its creation, its use for reading and writing, and its destruction. By using descriptors to write files, rather than simply naming the target file in the write call, one gains a surprising amount of flexibility. Often, the program that creates a descriptor will be different from the program that uses the descriptor. For exampl

    Getting More Information into File Names

    No full text
    Abstract: Hierarchical naming, while deeply embedded in our conception of file systems, is a rather weak tool for storing information about files and their relationships. A consequence is that users of today’s file systems frequently have trouble locating files. We describe a system in which a standard directory tree is extended by allowing names to contain auxiliary components representing descriptive attributes rather than directory names. This system allows files to be characterized more extensively, and lets users choose among multiple organizational structures for their stored information. A prototype has been implemented by means of a new vnode layer under SunOS 4.1.3. 1

    Virtual Memory Versus File Interfaces for Large, Memory-Intensive Scientific Applications

    No full text
    Scientific applications often require some strategy for temporary data storage to do the largest possible simulations. The use of virtual memory for temporary data storage has received criticism because of performance problems. However, modern virtual memory found in recent operating systems such as Cenju-3/DE give application writers control over virtual memory policies. We demonstrate that custom virtual memory policies can dramatically reduce virtual memory overhead and allow applications to run out-of-core efficiently. We also demonstrate that the main advantage of virtual memory, namely programming simplicity, is not lost. Keywords: virtual memory, file interface, memory-intensive, scientific applications, outof -core, fetch, store, replacement, custom policies 1 Introduction Industrial and grand-challenge simulations often require more memory than can be made available in RAM on high-performance systems. The efficient use of temporary (disk) storage for memory-intensive applicat..

    A visible polygon reconstruction algorithm

    No full text
    corecore