106 research outputs found

    A novel coordinated function of Myosin II with GOLPH3 controls centralspindlin localization during cytokinesis in Drosophila.

    Get PDF
    In animal cell cytokinesis interaction of non-muscle Myosin II (NMII) with F-actin provides the dominant force for pinching the mother cell into two daughters. Here we demonstrate that celibe (cbe) is a missense allele of zipper, which encodes the Drosophila Myosin heavy chain. cbe mutation impairs binding of Zipper protein to the regulatory light chain Spaghetti Squash (Sqh). In dividing spermatocytes from cbe males, Sqh fails to concentrate at the equatorial cortex, resulting in thin actomyosin rings that are unable to constrict. We show that cbe mutation impairs localization of the Phosphatidylinositol 4-phosphate [PI(4)P] binding protein Golgi phosphoprotein 3 (GOLPH3) and maintenance of centralspindlin at the cell equator of telophase cells. Our results further demonstrate that GOLPH3 protein associates with Sqh and directly binds the centralspindlin subunit Pavarotti. We propose that during cytokinesis the reciprocal dependence between Myosin and PI(4)P-GOLPH3 regulates centralspindlin stabilization at the invaginating plasma membrane and contractile ring assembly

    GOLPH3 protein controls organ growth by interacting with TOR signaling proteins in Drosophila

    Get PDF
    The oncoprotein GOLPH3 (Golgi phosphoprotein 3) is an evolutionarily conserved phosphatidylinositol 4-phosphate effector, mainly localized to the Golgi apparatus, where it supports organelle architecture and vesicular trafficking. Overexpression of human GOLPH3 correlates with poor prognosis in several cancer types and is associated with enhanced signaling downstream of mTOR (mechanistic target of rapamycin). However, the molecular link between GOLPH3 and mTOR remains elusive. Studies in Drosophila melanogaster have shown that Translationally controlled tumor protein (Tctp) and 14-3-3 proteins are required for organ growth by supporting the function of the small GTPase Ras homolog enriched in the brain (Rheb) during mTORC1 (mTOR complex 1) signaling. Here we demonstrate that Drosophila GOLPH3 (dGOLPH3) physically interacts with Tctp and 14-3-3ζ. RNAi-mediated knockdown of dGOLPH3 reduces wing and eye size and enhances the phenotypes of Tctp RNAi. This phenotype is partially rescued by overexpression of Tctp, 14-3-3ζ, or Rheb. We also show that the Golgi localization of Rheb in Drosophila cells depends on dGOLPH3. Consistent with dGOLPH3 involvement in Rheb-mediated mTORC1 activation, depletion of dGOLPH3 also reduces levels of phosphorylated ribosomal S6 kinase, a downstream target of mTORC1. Finally, the autophagy flux and the expression of autophagic transcription factors of the TFEB family, which anti correlates with mTOR signaling, are compromised upon reduction of dGOLPH3. Overall, our data provide the first in vivo demonstration that GOLPH3 regulates organ growth by directly associating with mTOR signaling proteins

    The Dynamic Cell The roles of the oncoprotein GOLPH3 in contractile ring assembly and membrane trafficking during cytokinesis

    Get PDF
    Abstract Cytokinesis is an intricate process that requires an intimate interplay between actomyosin ring constriction and plasma membrane remodelling at the cleavage furrow. However, the molecular mechanisms involved in coupling the cytoskeleton dynamics with vesicle trafficking during cytokinesis are poorly understood. The highly conserved Golgi phosphoprotein 3 (GOLPH3), functions as a phosphatidylinositol 4-phosphate (PI4P) effector at the Golgi. Recent studies have suggested that GOLPH3 is up-regulated in several cancers and is associated with poor prognosis and more aggressive tumours. In Drosophila melanogaster, GOLPH3 localizes at the cleavage furrow of dividing cells, is required for successful cytokinesis and acts as a key molecule in coupling phosphoinositide (PI) signalling with actomyosin ring dynamics. Because cytokinesis failures have been linked with pre-malignant disease and cancer, the novel connection between GOLPH3 and cytokinesis imposes new fields of investigation in cancer biology and therapy

    <i>Tordylium apulum L.</i>: caratterizzazione dell'olio essenziale e valutazione dell'attività  antimicrobica ed antiossidante

    Get PDF
    In questa sede vengono presentati i risultati della caratterizzazione dell'olio essenziale di Tordylium apulum L., una ombrellifera diffusa in tutto il bacino del Mediterraneo, in Europa continentale e in Asia Minore

    Role of BRCA2 mutation status on overall survival among breast cancer patients from Sardinia

    Get PDF
    Background: Germline mutations in BRCA1 or BRCA2 genes have been demonstrated to increase the risk of developing breast cancer. Conversely, the impact of BRCA mutations on prognosis and survival of breast cancer patients is still debated. In this study, we investigated the role of such mutations on breast cancer-specific survival among patients from North Sardinia. Methods: Among incident cases during the period 1997–2002, a total of 512 breast cancer patients gave their consent to undergo BRCA mutation screening by DHPLC analysis and automated DNA sequencing. The Hakulinen, Kaplan-Meier, and Cox regression methods were used for both relative survival assessment and statistical analysis. Results: In our series, patients carrying a germline mutation in coding regions and splice boundaries of BRCA1 and BRCA2 genes were 48/512 (9%). Effect on overall survival was evaluated taking into consideration BRCA2 carriers, who represented the vast majority (44/48; 92%) of mutation-positive patients. A lower breast cancer-specific overall survival rate was observed in BRCA2 mutation carriers after the first two years from diagnosis. However, survival rates were similar in both groups after five years from diagnosis. No significant difference was found for age of onset, disease stage, and primary tumour histopathology between the two subsets. Conclusion: In Sardinian breast cancer population, BRCA2 was the most affected gene and the effects of BRCA2 germline mutations on patients' survival were demonstrated to vary within the first two years from diagnosis. After a longer follow-up observation, breast cancer-specific rates of death were instead similar for BRCA2 mutation carriers and non-carriers

    Rab1 interacts with GOLPH3 and controls Golgi structure and contractile ring constriction during cytokinesis in Drosophila melanogaster

    Get PDF
    Cytokinesis requires a tight coordination between actomyosin ring constriction and new membrane addition along the ingressing cleavage furrow. However, the molecular mechanisms underlying vesicle trafficking to the equatorial site and how this process is coupled with the dynamics of the contractile apparatus are poorly defined. Here we provide evidence for the requirement of Rab1 during cleavage furrow ingression in cytokinesis. We demonstrate that the gene omelette (omt) encodes the Drosophila orthologue of human Rab1 and is required for successful cytokinesis in both mitotic and meiotic dividing cells of Drosophila melanogaster. We show that Rab1 protein colocalizes with the conserved oligomeric Golgi (COG) complex Cog7 subunit and the phosphatidylinositol 4-phosphate effector GOLPH3 at the Golgi stacks. Analysis by transmission electron microscopy and 3D-SIM super-resolution microscopy reveals loss of normal Golgi architecture in omt mutant spermatocytes indicating a role for Rab1 in Golgi formation. In dividing cells, Rab1 enables stabilization and contraction of actomyosin rings. We further demonstrate that GTP-bound Rab1 directly interacts with GOLPH3 and controls its localization at the Golgi and at the cleavage site. We propose that Rab1, by associating with GOLPH3, controls membrane trafficking and contractile ring constriction during cytokinesis

    Identification of GOLPH3 Partners in Drosophila Unveils Potential Novel Roles in Tumorigenesis and Neural Disorders.

    Get PDF
    Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases

    Rab1 interacts with GOLPH3 and controls Golgi structure and contractile ring constriction during cytokinesis in Drosophila melanogaster

    Get PDF
    Cytokinesis requires a tight coordination between actomyosin ring constriction and new membrane addition along the ingressing cleavage furrow. However, the molecular mechanisms underlying vesicle trafficking to the equatorial site and how this process is coupled with the dynamics of the contractile apparatus are poorly defined. Here we provide evidence for the requirement of Rab1 during cleavage furrow ingression in cytokinesis. We demonstrate that the gene omelette (omt) encodes the Drosophila orthologue of human Rab1 and is required for successful cytokinesis in both mitotic and meiotic dividing cells of Drosophila melanogaster. We show that Rab1 protein colocalizes with the conserved oligomeric Golgi (COG) complex Cog7 subunit and the phosphatidylinositol 4-phosphate effector GOLPH3 at the Golgi stacks. Analysis by transmission electron microscopy and 3D-SIM super-resolution microscopy reveals loss of normal Golgi architecture in omt mutant spermatocytes indicating a role for Rab1 in Golgi formation. In dividing cells, Rab1 enables stabilization and contraction of actomyosin rings. We further demonstrate that GTP-bound Rab1 directly interacts with GOLPH3 and controls its localization at the Golgi and at the cleavage site. We propose that Rab1, by associating with GOLPH3, controls membrane trafficking and contractile ring constriction during cytokinesis

    Caratterizzazione dell'olio essenziale di specie del genere <i>Hypericum</i> vegetanti in Sardegna

    Get PDF
    È obiettivo del nostro gruppo di ricerca la caratterizzazione dell'olio essenziale di Hypericum vegetanti in Sardegna, allo scopo di evidenziarne eventuali differenze dovute all'insularità . In questa sede vengono presentati i dati relativi alla caratterizzazione dell'olio essenziale di H. perforatum (stazione Monte Spada), H. calycinum (stazione Badde Salighes) e H. hircinum (stazioni Monte Spada e Ulassai)
    • …
    corecore